Study the Effect of SET Induced Faults on Submicron Technologies

Maarten van Kessel
University of Twente, Netherlands
Content

• Transient Faults
• Methodology
• Fault simulation
• Results
• Conclusion and Future Work
Transient Faults

- Origin of Transient Faults
 - Neutrons, protons, pions
 - Alpha particles
- Transient Induced Faults
 - SEU (Single Event Upset)
 - SET (Single Event Transient)
Transient Faults

- Importance of SEU and SET
 - Real Data from IROC Technologies (130nm)
 - 1 Error per 14 days for 148Mbyte memory
 - Increased complexity

- Higher density
 - Lower voltages
- Higher speeds
Methodology

• Physical Implemented Fault Injection
• Software Implemented Fault Injection
• Simulation-based Fault Injection

• Important issues
 • Accuracy of the processor model to conduct experiments
 • Pre-synthesized HDL model vs. post-synthesized timing netlist
 • The number of fault injection experiments
Fault Simulation

- **Xentium Processor (Recore Systems ©)**

The Xentium processor was fabricated in 90nm CMOS technology.
Fault Simulation

• Injection of SET

- Positive glitch
- Negative glitch

• Mibench benchmark suit
 • Quick Sort, BitCount and BasicMath program
Fault Simulation

- Timed and Untimed netlist
- Total failure rate of the datapath:

\[P_{\text{total}} = (A/E) P_E + (A/S) P_S + (A/A) P_A + (A/C) P_C + (A/P) P_P + (A/M) P_M \]
Results

- Untimed netlist
Results

- Timed netlist
Results

- Different behaviour
 - Lower rate of injected faults has been propagated in untimed netlist
 - An independent convergence point in timed netlist
Results

<table>
<thead>
<tr>
<th>Quicksort</th>
<th>bitcount</th>
<th>basicmath</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>26%</td>
<td>18%</td>
</tr>
<tr>
<td>S</td>
<td>28%</td>
<td>30%</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>36%</td>
<td>30%</td>
</tr>
<tr>
<td>S</td>
<td>20%</td>
<td>22%</td>
</tr>
<tr>
<td>A</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>A</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0%</td>
<td>5%</td>
</tr>
<tr>
<td>S</td>
<td>10%</td>
<td>3%</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2009 Recore Systems
Conclusions and Future Works

• On simulated IP 10-26% chance of catastrophic failure
• Timing information
• Convergence point

• Propose faster simulation method
• Compare results with physical fault injection
• Propose method for EDAC
Questions?