Wrap-Up Discussion

- **Goal:**
 - To produce a list of Grand Challenges in Dependable Nanocomputing
 - Elaboration of Grand Challenges from ITRS-2009
 - Non-exhaustive list - Focus on problems brought up in the presentations

- **Areas of interest (examples):**
 - Circuit Design
 - Multi-core architectures
 - Testing
 - Fault Tolerance
 - Fault and failure models
 - Dependability prediction and assessment
List of Grand Challenges in Dependable Nanocomputing

- Testing of integrated circuits with massive process variations
 - Several problem areas highlighted in the special session
 - Testing of robust and FT circuits and systems is difficult
 - Identifying process parameters that has the most impact on dependability
 - Synergies between on-line and off-line testing
 - New definition of testing needed

- Building reliable systems from partially correct circuits
 - Confidence in test coverage
 - Reconfiguration, application deployment
List of Grand Challenges in Dependable Nanocomputing

Accurate modeling of faults, errors and failures
 - Understanding the impact of faults on the system service
 - Problem areas:
 - Linking models at different abstraction levels
 - Workload dependency
 - Fault types:
 - Soft errors (transient faults)
 - Intermittent faults
 - Aging faults
 - Delay faults
 - Design faults
 - Malicious faults
List of Grand Challenges in Dependable Nanocomputing

- Construction of dependable nanocomputing systems
 - Trade-off between Dependability, Energy consumption and Area Overhead
 - Cost-effective solutions
 - Trade-off between circuit, micro-architectural, software and system level techniques
 - Need for adaptive and configurable fault tolerance
 - Cost of design and design verification
 - Complexity (e.g., hubble radius)