

ORACLE®

Soft Error Rate Trends 4th Workshop on Dependable and Secure

Nanocomputing (WDSN-10)

Alan Wood

June 28, 2010

Shameless Advertisements

- Presentation data came from the 2010 Workshop on System Effects of Logic Soft Errors (SELSE-6)
 - www.selse.org
- Birds of a Feather session on The Future of Dependability Tuesday night, 18:00-19:30, State Room

Agenda

- Technology trends
- Soft error rate (SER) trends
 - DRAM
 - SRAM
 - Logic

The Largest Scale

• ExaFlops supercomputer (10^18) in 2020

ExaScale Computing Challenges

- Energy both for base computation and data transport
- Memory and Storage bandwidth
- Concurrency and Locality support for a billion parallel threads
- Resiliency "the ability of a system to continue operation in the presence of either faults or performance fluctuations."
 - Explosive growth in component count for large systems
 - Advanced technology
 - Lower voltage levels
 - New classes of aging effects

Source: DARPA ExaScale Computing Study

Equivalent Technology Scaling

"Equivalent" scaling means the number of functions doubles every 2 years (does not mean half pitch, gate length, feature size)

ORACLE

Feature Size Scaling

Feature size scaling not quite at Moore's law rate but still worrisome for SER trends

Source: 2009 ITRS

ORACLE

Servers in 2020

- Microprocessors
 - ~6-8nm technology (equivalent scaling)
 - ~128 cores per chip
 - ~16 Billion transistors per chip
 - Mostly SOCs?
 - CMOS replacement?
- Memory
 - Stacked or embedded (no DIMMs)
 - Flash part of memory hierarchy
 - New technologies (PRAM, NRAM, ...)

Servers in 2020 - 2

- Storage
 - SSDs everywhere
 - New technology (holographic)?
- Packaging
 - 3D
 - Liquid cooling
 - Including on-chip, e.g., heat pipes
 - Free-space optics?

DRAM SER Trend

Source: L. Borucki, G. Schindlbeck and C. Slayman, "Comparison of Accelerated DRAM Soft Error Rates Measured at Component and System Level", IRPS, Phoenix, 2008

DRAM SER Trend Explanation

- DRAM memory cell SER has decreased by 2-3 orders of magnitude in the last 10 years
- Memory Cells
 - Basic DRAM cell has not changed much, so cell capacitance has not changed much, so Qcrit has not changed much
 - Charge collection area decreased by a factor of 2 with each generation
- DRAM Logic
 - Charge collection area has decreased, but decreases in voltage and different circuit designs has significantly decreased Qcrit

SRAM SER Trend- Sun

SRAM SER Trend-AMD

Source: Seth Prejean, "Accelerated Neutron Soft Error Rate Testing of AMD Microprocessors", SELSE-6, Stanford, 2010

SRAM and Logic SER Trend- Sun

SRAM and Logic SER Trend- AMD

Source: Seth Prejean, "Accelerated Neutron Soft Error Rate Testing of AMD Microprocessors", SELSE-6, Stanford, 2010

Logic SER Trend as a Function of Voltage

SER Trend Explanation

Vdd \downarrow — Critical Charge \downarrow — SER \uparrow

SER α Area * exp(-Qcrit/Qcoll)

Linear with Area; Exponential with Vdd

Microprocessor SER Trend- Sun

