Implementation of Self-Healing
Asynchronous Circuits at the Example of
a Video-Processing Algorithm

T. Panhofer W. Friesenbichler A. Steininger
Vienna University of Technology

Outline

e Motivation & Objective
e Asynchronous Logic
e Self-Healing Concept

e Case Study: SH implementation of
video processing algorithm

e Experimental Results (& Lessons Learnt)

e Conclusion & Outlook

The Nanoscale Challenges

e significant parameter variations
threshold voltages, delays, leakages,...

e increased rate of transient faults
lower voltage, smaller critical charge,...
e increasing danger of permanent faults
more functions/chip, higher temperature

Resulting Needs

e significant parameter variations
need robust design methods that are
Inherently able to cope with these variations

® Increased rate of transient faults
need fault tolerance or robustness

e increasing danger of permanent faults
need self-repair or ,self-healing”

Why Use Asynchronous Logic?

e .delay insensitive* operation
based on local handshaking (closed loop),
not on global clock (open loop)

high robustness in time domain

e two-rail coded data
high robustness in value domain

FSL — How does it work?

dual-rail encoded data
two representations for HI/LO

tokens in alternating ,phases*

implicit request

- x 0 1 1 0
y 01 X 11 X 10 Y 00

\ Phase Tl X @0 X @l X g0

explicit acknowledge

How far does this get us?

v'significant parameter variations
delay-insensitive logic has a robust timing
that can tolerate (virtually) all variations

v'increased rate of transient faults
two-rail coding, robust timing

é Increasing danger of permanent faults
still need self-repair or ,self-healing”

Requirements for ,Self-Healing®

e detection of (permanent) error
© DI logic tends to stop working Iin this case

e identification of faulty cell
© handshake signals tend to point there

e fault removal
© temporal robustness makes re-routing easier

Self-Healing Concept (1)

AO00000n000Mn01M

Application logic

IJLIIJLILILILILILIULILILI

Self-Healing Concept (2)

Transformation Self-Healing Cell

data —p - —» data
register register

pass Acknowledge done

€— pass

done <«

NOM
input

ﬂl 1 rep

RED input

e c Ack Reg.

| Switch | |Sw1i}°h [

Reconfiguration Inputs L
Phase Detector Outputs
L, Activity |Reset | Watchdog
Detector Counter = " .
CmETELEr Controller [|
7y Timeout Limit
o —_— ;
) Reconfiguration
Deadlock Detector Controller

10

What's the Benefit over TMR?

e both approaches tolerate first fault
TMR without interruption of service (2003)
selfhealing possibly with interruption (1002)

e self-healing Is more fine-grained
more options to bypass defective element

no need to rely on ,luck® (next defect not in
remaining operative nodes)

11

Why not use dynamic Reconfig.?

e for FPGAs only
e config interface = single point of failure

e how derive new configuration?

static => too memory intensive
need config for each defect set

dynamic => too performance intensive
need PPR tool on mission

12

How control Reconfiguration?

e Simple (=robust) solution: [initial idea]
,Jyandom repair” without diagnosis
bits of a counter control switches

count up upon watchdog timeout
=> new configuration

If defect not removed => circuit still halted
=> next timeout => new try

with first valid configuration circuit operation
continues

13

Application Study: GAIA VPU

Part of the video processing algorithm used in
the ESA space mission GAIA
GAIA VPU = GAIA Video Processing Unit

linear correction dead column correction

14

Why use this Application?

e real-world circuit structure and size
pipeline with forks, joins and loops

e typical space application
long mission time
extreme environment
high dependabiltly required
no manual repair possible

=> self-healing Is attractive

15

Environment for HW-Experiments

...embedded into the fault injection environment

STEFAN = Synthesizeable Test Environment For Asynchronous Networks

X

- Data Clock
~
Source Ack
Data

Data

Ack Sink

UutReset, UutEn

Internal Bus lL
@ A4 ki

(Sink Full)

-

Command
<:::> UutLength
D Controller i

' o
Data
o
| Source Ack _ A
Data :
FI Control

(Test Length)

Test vector
Command File ‘

16

HW Experiments — Results

e Autonomous reconfiguration
e Single stuck-at fault |njected at mternal

acknowledge signal

e Counter used as
reconfiguration
controller

Tek PreVu]_'

Chl[5.00V \

5.00V

MI1. 00ms| A| Ch1 % 1.90 v[

17/20.00 %

17

HW EXxperiments — Resources

e # of 4-input LUTs (Xilinx Virtex-4)

resources relation

Synchronous GAIA 35 5%
FSL GAIA (reference) 755 100%
SH-GAIA 1565 207%
Reconfiguration Unit (RU) 39 6%
SH-GAIA incl. RU 1604 213%

e Standard FPGAs can be used for prototyping of
asynchronous logic, but are not efficient

e 207% resources but multiple fault tolerance
e Reconfiguration Unit might have significant impact

18

Lessons Learnt

e In principle the idea works, BUT

e reconfiguration controller problematic
counter causes overhead => use LFSR
too many values to try => split controllers

Ineffective repair attempts may corrupt state
=> need diagnosis and systematic repair

e better solution:

block-wise diagnosis
with local ,random* repair

19

Conclusion

e asynchronous logic can solve some of
the problems associated with nanoscale

e permanent faults require self-repair,
asynchronous design aids in
detection
reconfiguration and
recovery
e fine-grain repair beneficial over
component-level repair

e presented solution shown to work in 2
principle but reconfiguration controller

Thank you for your attention!

Environment for Experiments

Self-Healing implementation...

Data NOM

Source

NOM

Data NOM
Ack NOM ™ AckNOM

<

FSL_SH_LinCorr FSL_SH_DeadCorr

Ack RED

Reconfiguration Reconfiguration Data RED
Inputs Inputs
N

l 46bit l
WD Reset WD Reset
Reconfiguration Reconfiguration

Unit Unit

>

Data RED

22

SHC Reliability vs. Overhead

Example: fine/coarse granular SHC adder

1.15

T I 4 .
[=ReEg) coarse grain:
| | constant overhead

Reliability Gain

s fine grain:

'y decreasing relative
..~ overhead of
switches

i i i i
32 64 128 256 512 1024
Width of adder in [bit]

23

