
Implementation of Self-Healing
Asynchronous Circuits at the Example of
a Video-Processing Algorithm

T. Panhofer W. Friesenbichler A. Steininger
Vienna University of Technology

2

Outline

  Motivation & Objective

  Asynchronous Logic

  Self-Healing Concept

  Case Study: SH implementation of
 video processing algorithm

  Experimental Results (& Lessons Learnt)

  Conclusion & Outlook

3

The Nanoscale Challenges

 significant parameter variations
  threshold voltages, delays, leakages,…

  increased rate of transient faults
  lower voltage, smaller critical charge,…

  increasing danger of permanent faults
  more functions/chip, higher temperature

 …

4

Resulting Needs

 significant parameter variations
 need robust design methods that are
 inherently able to cope with these variations

  increased rate of transient faults
 need fault tolerance or robustness

  increasing danger of permanent faults
 need self-repair or „self-healing“

 …

5

Why Use Asynchronous Logic?

  „delay insensitive“ operation
  based on local handshaking (closed loop),
  not on global clock (open loop)

 high robustness in time domain

  two-rail coded data
 high robustness in value domain

6

FSL – How does it work?

implicit request

explicit acknowledge

  dual-rail encoded data

  two representations for HI/LO

  tokens in alternating „phases“

7

How far does this get us?

 significant parameter variations
 delay-insensitive logic has a robust timing
 that can tolerate (virtually) all variations
 increased rate of transient faults

 two-rail coding, robust timing
 increasing danger of permanent faults

 still need self-repair or „self-healing“

8

Requirements for „Self-Healing“

� detection of (permanent) error
☺  DI logic tends to stop working in this case

�  identification of faulty cell
☺  handshake signals tend to point there

�  fault removal
☺  temporal robustness makes re-routing easier

9

Self-Healing Concept (1)

10

Self-Healing Concept (2)

 Transformation Self-Healing Cell

11

What‘s the Benefit over TMR?

 both approaches tolerate first fault
  TMR without interruption of service (2oo3)
  selfhealing possibly with interruption (1oo2)

 self-healing is more fine-grained
  more options to bypass defective element
  no need to rely on „luck“ (next defect not in
remaining operative nodes)

12

Why not use dynamic Reconfig.?

  for FPGAs only
 config interface = single point of failure
 how derive new configuration?

  static => too memory intensive
 need config for each defect set

  dynamic => too performance intensive
 need PPR tool on mission

13

How control Reconfiguration?

 Simple (=robust) solution: [initial idea]
  „random repair“ without diagnosis
  bits of a counter control switches
  count up upon watchdog timeout
=> new configuration
  if defect not removed => circuit still halted
=> next timeout => new try
  with first valid configuration circuit operation
continues

14

Application Study: GAIA VPU

Part of the video processing algorithm used in
the ESA space mission GAIA
GAIA VPU = GAIA Video Processing Unit

linear correction dead column correction

15

Why use this Application?

  real-world circuit structure and size
  pipeline with forks, joins and loops

  typical space application
  long mission time
  extreme environment
  high dependabiltiy required
  no manual repair possible

 => self-healing is attractive

16

Environment for HW-Experiments

…embedded into the fault injection environment
STEFAN = Synthesizeable Test Environment For Asynchronous Networks

17

HW Experiments – Results

  Autonomous reconfiguration
  Single stuck-at fault injected at internal
acknowledge signal
  Counter used as
reconfiguration
controller

18

HW Experiments – Resources

  # of 4-input LUTs (Xilinx Virtex-4)

  Standard FPGAs can be used for prototyping of
asynchronous logic, but are not efficient

  207% resources but multiple fault tolerance

  Reconfiguration Unit might have significant impact

19

Lessons Learnt

  In principle the idea works, BUT
  reconfiguration controller problematic

  counter causes overhead => use LFSR
  too many values to try => split controllers
  ineffective repair attempts may corrupt state
=> need diagnosis and systematic repair

 better solution:
  block-wise diagnosis
  with local „random“ repair

20

Conclusion

 asynchronous logic can solve some of
the problems associated with nanoscale
 permanent faults require self-repair,
asynchronous design aids in

  detection
  reconfiguration and
  recovery

  fine-grain repair beneficial over
component-level repair
 presented solution shown to work in
principle but reconfiguration controller

Thank you for your attention!

22

Environment for Experiments

 Self-Healing implementation…

23

SHC Reliability vs. Overhead

Example: fine/coarse granular SHC adder
coarse grain:

constant overhead

fine grain:
decreasing relative
overhead of
switches

