
TOWARDS UNDERSTANDING THE EFFECTS OF

INTERMITTENT HARDWARE FAULTS ON PROGRAMS

Layali Rashid, Karthik Pattabiraman and Sathish Gopalakrishnan
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

THE UNIVERSITY OF BRITISH COLUMBIA

Motivation: Why Intermittent Faults?

� Intermittent faults are likely to be a significant concern
in future processors
� Do not persist forever unlike permanent faults

� Persist for longer duration than transient faults

� May impact program more than transient faults� May impact program more than transient faults

� Assumption:

� An intermittent fault affects two or more consecutive
instructions in the program.

Contributions

� Study the impact of intermittent faults on
programs.

� Model the propagation of intermittent faults in
programs at the instruction-level.

� Validate the model using fault injections.� Validate the model using fault injections.

Motivation: Why Model Error Propagation?

� Fault injection experiments are prohibitively
expensive.
� Intermittent faults vary in location and duration.

� An order of magnitude slower than modeling.

� Modeling error propagation provides more insights
that may help in tolerating faults.

Primary Research Questions

� Do all intermittent faults lead to program crash?

� How many instructions are executed before the
program crashes? program crashes?

� How many variables are corrupted by the fault
before the program crashes?

Approach

Crash ModelFault Model

Dynamic
Dependency Graph

SimpleScalar
simulator

Evaluate using FI

Approach

Crash Model

Fault Model
• Decoder
•ALU Unit
• Load/Store Unit

SimpleScalar
simulator

Evaluate using FI

Dynamic
Dependency Graph

Approach

Fault Model

Crash Model
•Memory address
•Branch/jump address
•Function call address

SimpleScalar
simulator

Evaluate using FI

Dynamic
Dependency Graph

Approach

Crash ModelFault Model

Dynamic Dependency Graph is a
directed acyclic graph that models the
dynamic dependencies between
instructions. [Agrawal '90]

SimpleScalar
simulator

Evaluate using FI

Code Fragment Node

mov R1, #5 1

mov R2, #6 2

mov R3, #7 3

ld R4, R1, Array_Addr 4
AA

1

4

2

5

Array_Addr

#5 #6

3

6

#7

A

Example

ld R4, R1, Array_Addr 4

ld R5, R2, Array_Addr 5

ld R6, R3, Array_Addr 6

mult R7, R5, R4 7

4 5

7

6

R R
.
.
.

Code Fragment Node

mov R1, #5 1

mov R2, #6 2

mov R3, #7 3

ld R4, R1, Array_Addr 4

1

4

2

5

Array_Addr

#5 #6

3

6

#7

A A A

Example

ld R4, R1, Array_Addr 4

ld R5, R2, Array_Addr 5

ld R6, R3, Array_Addr 6

mult R7, R5, R4 7

4 5

7

6

R R
.
.
.

A node is a value produced by a
dynamic instruction

Code Fragment Node

mov R1, #5 1

mov R2, #6 2

mov R3, #7 3

ld R4, R1, Array_Addr 4
AA

1

4

2

5

Array_Addr

#5 #6

3

6

#7

A

Example

ld R4, R1, Array_Addr 4

ld R5, R2, Array_Addr 5

ld R6, R3, Array_Addr 6

mult R7, R5, R4 7

4 5

7

6

R R
.
.
.

The edges represent the instructions’ operands:
•A is an address operand
• R is a regular operand.

DDG Metrics

� Intermittent Propagation Set (IPS): set of
program values to which an intermittent fault
propagates,

� Crash Distance (CD): number of instructions � Crash Distance (CD): number of instructions
that execute from the time an intermittent fault
occurs until the program crashes (due to fault).

Example

Code Fragment Node

mov R1, #5 1

mov R2, #6 2

mov R3, #7 3

ld R4, R1, Array_Addr 4
AA

1 2

5

Array_Addr

#5 #6

3

6

#7

A

Intermittent
Error

4
ld R4, R1, Array_Addr 4

ld R5, R2, Array_Addr 5

ld R6, R3, Array_Addr 6

mult R7, R5, R4 7

5

7

6

R R
.
.
.

4

Intermittent Propagation Set (1,2) = {?}
Crash Distance (1, 2) = ?

Example

Code Fragment Node

mov R1, #5 1

mov R2, #6 2

mov R3, #7 3

ld R4, R1, Array_Addr 4
AA

1 2

5

Array_Addr

#5 #6

3

6

#7

A

4

Transient Error

Crash Node
ld R4, R1, Array_Addr 4

ld R5, R2, Array_Addr 5

ld R6, R3, Array_Addr 6

mult R7, R5, R4 7

5

7

6

R R
.
.
.

Transient Propagation Set (1) = {1, 4}
Transient Crash Distance (1) = 4

4Crash Node

Example

Code Fragment Node

mov R1, #5 1

mov R2, #6 2

mov R3, #7 3

ld R4, R1, Array_Addr 4
AA

1

4

2
Array_Addr

#5 #6

3

6

#7

A

5

Transient Error

ld R4, R1, Array_Addr 4

ld R5, R2, Array_Addr 5

ld R6, R3, Array_Addr 6

mult R7, R5, R4 7

4

7

6

R R
.
.
.

5

Transient Propagation Set (1) = {1, 4}
Transient Crash Distance (1) = 4

Transient Propagation Set (2) = {2, 5}
Transient Crash Distance (2) = 4

Example

Code Fragment Node

mov R1, #5 1

mov R2, #6 2

mov R3, #7 3

ld R4, R1, Array_Addr 4
AA

1 2

5

Array_Addr

#5 #6

3

6

#7

A

4

Intermittent
Error

Crash Node
ld R4, R1, Array_Addr 4

ld R5, R2, Array_Addr 5

ld R6, R3, Array_Addr 6

mult R7, R5, R4 7

5

7

6

R R
.
.
.

Intermittent Propagation Set (1,2) = {1, 2, 4}
Crash Distance (1, 2) = 4

4Crash Node

Approach

Crash ModelFault Model

Dynamic

SimpleScalar
simulator

Evaluate using FI

Dynamic
Dependency Graph

Experimental Setup

� Evaluating the Model’s Accuracy
� Intermittent fault injections in instruction level

simulator (SimpleScalar)

� Measure the difference between the predicted and the
actual CD for crashesactual CD for crashes

� Computation of Intermittent Fault Propagation
� Construct the DDG of each program.

� Find the IPS and the CD for each fault

Benchmarks

� Preliminary results for two programs: Matrix Multiply
and Insertion Sort.

� Each program has about 11,000 static MIPS instructions.

Results: DDG Model Vs. SimpleScalar

� 88% of the expected CD fall within 10 nodes from the actual
ones and 97% fall within 100 nodes.

Results: CD Absolute values

� 95% of the faults cause program to crash within 10 nodes of
the fault’s start.

Results: Effect of Fault Length

Conclusions and Discussion
� We enhanced Dynamic Dependency Graph to model intermittent

fault propagation in programs.

� 88% of the expected faults' CDs fall within 10 nodes of the actual
CDs.

� The majority of the intermittent faults cause programs to crash The majority of the intermittent faults cause programs to crash
within few hundreds of dynamic instructions.

� Discussion
� Detection using software-based techniques of intermittent faults

can be efficient.

� Diagnosis of intermittent faults is possibly feasible using software-
based techniques.

� Recovery using check-pointing techniques on the order of
thousands of instructions will be effective.

THANKYOU

BACKUP SLIDES

Insertion Sort CD

Insertion Sort IPS

