
2010.06.28 1

Pair & Swap : An Approach to
Graceful Degradation for

Dependable Chip Multiprocessors

Masashi Imai (miyabi@hal.rcast.u-tokyo.ac.jp)
Tomohide Nagai (nagai@hal.rcast.u-tokyo.ac.jp)

Takashi Nanya (takashi.nanya@canon.co.jp)

WDSN10

Agenda
�   Introduction

�  Related works
�  Pair & Swap

�  Concept
�  Hardware model
�  Execution steps
�  Comparison mechanism
�  Task management mechanism

�  Evaluation
�  Conclusion

2010.06.28 WDSN10 2

�   VLSI technology scaling
 The performance improvement of a single processor
is limited due to clock skew, power dissipation, ILP,
and complexity

�   CMP (Chip Multi-Processor)
�   Integrates multiple processor cores in a single chip
�   CMP is a promising VLSI architecture, not only for

high performance but also for reducing power
dissipation

�   Even if a processor core becomes faulty, the
remaining cores can continue to operate
 It is not efficient to replace the entire CMP chip
immediately when a permanent fault occurs

2010.06.28 WDSN10 3

Background & Motivation

�   We consider CMP systems as non-repairable
systems and present an approach to graceful
degradation for dependable CMP

�   Dual module redundancy (DMR)
�   Can detect faults by comparing the result of tasks
�   The number of tasks in N-cores CMP : N/2

�   Triple module redundancy (TMR)
�   Can mask faults
�   Can identify a failure core
�   The number of tasks in N-cores CMP : N/3

 Pair-based scheme for dependable CMP in
order to achieve high-performance

2010.06.28 WDSN10 4

Background & Motivation

Related works
�  Single-processor SMT devices

�  RMT (Redundant MultiThreading) [Nirmal98]
�  AR-SMT (Active-stream/Redundant-stream

Simultaneous MultiThreading) [Eric99]
�  A tme redundancy techniques which compares the

results of a leading thread called A-thread with the
results of a trailing thread called R-thread

�  SRT (Simultaneous and Redundantly
Threaded) [Reinhardt00]
�  Executes two identical copies of the same program

as independent threads and compares their results
�  SRTR (SRT with Recovery) [Vijaykumar02]

2010.06.28 WDSN10 5

Related works
�   Dual-processor devices which indicate both a

dual-core CMP chip and different dies
�  Lockstep techniques [Nicholas93, Timothy99, Reorda09]

�  Assumes that an error in either processor will
cause a difference between the states of the two
processors

�  Watchdog processors [Mahmod88]
�  DIVA (Dynamic Implementation Verification

Architecture) [Austin99]
�  Employs a high-performance processor core as a

leading core and a low-performance core as a
trailing checker core

2010.06.28 WDSN10 6

Related works
�   CMP devices

�   CRT (Chip-level Redundant Threading) [Mukherjee02]
�   Applies SRTʼs detection techniques to CMPs

�   CRTR (CRT with Recovery) [Mohamed03]
�   Extends the CRT for transient-fault detection

�   DCR (Dual Core Redundancy) [Gong08]
�   Extends the CRT by adding HW implemented context saving

and recovery
�   TCR (Triple Core Redundancy) [Gong08]

�   Extends three copies of a given program on a leading thread, a
middle thread, and a trailing thread

�   DCC (Dynamic Core Coupling) [Christopher07]
�   Allows arbitrary CMP cores to verify each otherʼs execution

while requiring no dedicated cross-core communication
channels or buffers

�   The basic concept of our method is similar to DCC, while DCC
employs a TMR using hot spares in order to isolate a failure
core and recovery its task

2010.06.28 WDSN10 7

Agenda
�   Introduction

�  Related works
�  Pair & Swap

�  Concept
�  Hardware model
�  Execution steps
�  Comparison mechanism
�  Task management mechanism

�  Evaluation
�  Conclusion

2010.06.28 WDSN10 8

Fault model
�   Single-core fault

�   A fault can occur only in a single core at a time

�   Permanent fault
�   We must identify the failure core and stop using it

�   Transient fault
�   The core in which a transient fault occurs can be

recovered by re-executing from the latest checkpoint
 We do not have to stop using it immediately

�   Generally, transient faults tend to occur much more
frequently than permanent faults

2010.06.28 WDSN10 9

�   Processor-level fault tolerance technique for CMPs which
consists of two phases

�   Pair phase : replication and comparison
�   Two identical copies of a given task are executed on a pair

of two processor cores and the results are compared
�   If no fault is detected, each core repeats a period of

execution and comparison
�   Swap phase : swap and retry

�   Partners of the mismatched pair are swapped with another
pair and mismatched task is re-executed from the latest
checkpoint

�   It is decided whether the fault is transient or permanent in
the end of the swap phase
�   Permanent fault: the failure core is identified and isolated to

reconfigure the entire CMP system for continuous operation in
a degraded mode

�   Transient fault: the swapped pairs continue their tasks without
any reconfiguration in the next pair phase

2010.06.28 WDSN10 10

Pair & Swap

Target model
1.  More than four cores in order to swap partners
2.  A stable storage in order to retry the mismatched task

from the latest correct checkpoint
  A shared memory is used as the stable storage and the correct

checkpoint data is stored in the shared memory
3.  A non-faulty decision unit which decides the comparison

results of all the pairs in order to generate consistent
comparison results
  It is needed because a pair of two cores in which a fault may

occur cannot generate a consistent comparison result by
themselves

2010.06.28 WDSN10 11

Core1 Task A(i)

Pair & Swap: Pair phase

Core2

Core3

Core4

Task A(i)

Compare & CP period

12

Task B(i)

Task B(i)

Comparison
Task A(i)
Task B(i)

2010.06.28 WDSN10

pair phase

Compare

Checkpoint

Core1 Task A(i)

Pair & Swap: Pair phase

Core2

Core3

Core4

Task A(i)

Compare & CP period

13

Task B(i)

Task B(i)

Comparison
Task A(i)
Task B(i)

2010.06.28 WDSN10

pair phase

Compare

Checkpoint

Task A(i+1)

Task A(i+1)

Task B(i+1)

Task B(i+1)

Comparison
Task A(i+1)
Task B(i+1)

Core1 Task A(i)

Pair & Swap: Pair phase

Core2

Core3

Core4

Task A(i)

Compare & CP period

14

Task B(i)

Task B(i)

Comparison
Task A(i)
Task B(i)

2010.06.28 WDSN10

pair phase

Compare

Checkpoint

Task A(i+1)

Task A(i+1)

Task B(i+1)

Task B(i+1)

Comparison
Task A(i+1)
Task B(i+1)

Task A(i+2)

Task A(i+2)

Task B(i+2)

Task B(i+2)

Comparison
Task A(i+2)
Task B(i+2)

Task A(i+3)

Task A(i+3)

Task B(i+3)

Task B(i+3)

Comparison
Task A(i+3)
Task B(i+3)

Core1 Task A(i)

Pair & Swap: Swap phase

Core2

Core3

Core4

Task A(i)

Task B(i)

Task B(i)

Comparison
Task A(i)
Task B(i)

2010.06.28 15 WDSN10

pair phase swap phase

Detect a fault

Compare

Checkpoint

Rollback (load CP)

Core1 Task A(i)

Pair & Swap: Swap phase

Core2

Core3

Core4

Task A(i)

Task B(i)

Task B(i)

Task A(i)

Task B(i+1)

Task A(i)

Comparison
Task A(i)
Task B(i)

Task B(i+1)

Task migration

Task A(i) is re-executed

2010.06.28 16 WDSN10

pair phase swap phase

Compare

Checkpoint

Rollback (load CP)

�   Transient fault case

Core1 Task A(i)

Pair & Swap: Fault location (1)

Core2

Core3

Core4

Task A(i)

Task B(i)

Task B(i)

Task A(i)

Task B(i+1)

Task A(i)

Comparison
Task A(i)
Task B(i)

Task B(i+1)

2010.06.28 17 WDSN10

pair phase swap phase

Compare

Checkpoint

Rollback (load CP)

Comparison
Task A(i)

Task B(i+1)

It can be decided that
the fault was transient

 the two pairs
continue executing the
same tasks by starting

a new Pair phase

In the end of the Swap phase,
both comparison results match

�   Transient fault case

Core1 Task A(i)

Pair & Swap: Fault location (1)

Core2

Core3

Core4

Task A(i)

Task B(i)

Task B(i)

Task A(i)

Task B(i+1)

Task A(i)

Comparison
Task A(i)
Task B(i)

Task B(i+1)

2010.06.28 18 WDSN10

pair phase swap phase

Comparison
Task A(i)

Task B(i+1)

pair phase

Task A(i+1)

Task B(i+2)

Task A(i+1)

Task B(i+2)

Comparison
Task A(i+1)
Task B(i+2)

Task A(i+2)

Task B(i+3)

Task A(i+2)

Task B(i+3)

Comparison
Task A(i+2)
Task B(i+3)

�   Permanent fault case

Core1 Task A(i)

Pair & Swap: Fault location (2)

Core2

Core3

Core4

Task A(i)

Task B(i)

Task B(i)

Task A(i)

Task B(i+1)

Task A(i)

Comparison
Task A(i)
Task B(i)

Task B(i+1)

2010.06.28 19 WDSN10

pair phase swap phase

Compare

Checkpoint

Rollback (load CP)

Comparison
Task A(i)

Task B(i+1)

The failure core is identified as
the one that executed the

mismatched tasks in both the
Pair phase and the Swap phase.

 stop using the Core2

In the end of the Swap phase, the
comparison result of Task A(i)

mismatches

�   Permanent fault case

Core1 Task A(i)

Pair & Swap: Fault location (2)

Core2

Core3

Core4

Task A(i)

Task B(i)

Task B(i)

Task A(i)

Task B(i+1)

Task A(i)

Comparison
Task A(i)
Task B(i)

Task B(i+1)

2010.06.28 20 WDSN10

pair phase swap phase

Compare

Checkpoint

Rollback (load CP)

Comparison
Task A(i)

Task B(i+1)

�   Permanent fault case

Core1 Task A(i)

Pair & Swap: Fault location (2)

Core2

Core3

Core4

Task A(i)

Task B(i)

Task B(i)

Task A(i)

Task B(i+1)

Task A(i)

Comparison
Task A(i)
Task B(i)

Task B(i+1)

2010.06.28 21 WDSN10

pair phase swap phase

Compare

Checkpoint

Rollback (load CP)

Comparison
Task A(i)

Task B(i+1)

Task A(i+1)

Task A(i+1)

Task A(i+1)

pair phase

“Trio” configuration
�   When a permanent fault occurs, the number of

processor cores may become odd (2m+1)
  It can compose m-1 pairs using 2(m-1) cores and 3
processor cores remain
 3 cores execute the same task and compare their
results each other: “Trio” configuration

22 2010.06.28 WDSN10

Core1 Task A(i) Task A(i+1) Task A(i+2) Task A(i+4)Task A(i+3)

Core2

Core3

Task A(i) Task A(i+2) Task A(i+3)Task A(i+1) Task A(i+4)

pair phase

Task A(i) Task A(i+2) Task A(i+3)Task A(i+1) Task A(i+4)

Comparison mechanism
�   What should be compared for replicated

task execution depends on the application
�   all register file, status registers, and memory

updates
�   the output value of the system may only be

required
�   Two processor cores in each pair exchange

the compressed data over the system bus
�   MPI can be used

�   Each core compares its data with partnerʼs
data each other

23

Exec Exec

Compare Compare

Core Core

The result
of tasks

2010.06.28 WDSN10

Coorree1 Coorree2
No fault occurs Task execution No error No error

Comparison result MMATTCH MATTCH
A fault occurs during
task execution

Task execution No error Error
Comparison result MISMATTCH MATTCH oorr

MISMATTCH
A fault occurs during
comparison

Task execution No error No Error
Comparison result MMATTCH MISMATTCH

Comparison mechanism
�   The decision unit

�   Gathers the comparison results from
all the cores

�   Decides whether the results match or
mismatch for all the pairs like the
following table

�   A Comparison result of each core can be
represented by one bit.

�   Broadcasts its results to all the cores

24

Corre1 commppaarrison rresullt Corre2 commppaarrison rresullt DDecision unit outpput

Match Match Match
Match Mismatch Mismatch

Mismatch Match Mismatch
Mismatch Mismatch Mismatch

Exec Exec

Compare Compare

Core Core

Decision

The result
of tasks

The result of
comparison

Broadcast to
all the cores

2010.06.28 WDSN10

Task assignment table
�   Each processor core manages the

core paring and the task assignment
table
�   There is no special core which controls the

entire system
�   Tasks have priority and the list is

ordered by the priority

25

Priority

High

Low

Taasskk Assssiiggnneedd
ccoorreess

A 0, 1
B 2, 3
C 4, 5
D 6, 7

2010.06.28 WDSN10

�   When a mismatched task is detected in the comparison results
which are broadcasted by the decision unit in the Pair phase, each
core updates the table for the following Swap phase

�   The swapping pair is selected as follows;
1.  If there is a Trio in the table, the Trio is selected
2.  The pair which executes the lowest priority task except it

own pair is selected
�   Permanent fault The lowest task in the table cannot be

executed in the next Pair phase

Agenda
�   Introduction

�  Related works
�  Pair & Swap

�  Concept
�  Hardware model
�  Execution steps
�  Comparison mechanism
�  Task management mechanism

�  Evaluation
�  Conclusion

2010.06.28 WDSN10 26

Evaluation
�   Evaluate the expected value of the computation capability to

failure called “MCTF (Mean Computation To Failure)” using
the Markov chains in order to compare the performance

�   Comparison targets
1. Proposed Pair & Swap
2. Dynamic TMR
3. Static TMR

�   Failure rate
�   Permanent : λ=1.0x10-9

�   Transient : ε=1.0x10-7

�   Fault detection, fault location, and reconfiguration are successfully
executed with a probability of 1

27 2010.06.28 WDSN10

MCTF = (Performance(i) × Pi (t)dt)
0

∞

∫
i≠ failure

∑

Markov chain of Pair & Swap

�   The performance is defined as the mean number of tasks
which can be executed at the state
�   If a fault is detected in any pairs, the mismatched task must

be re-executed
 The mean number of tasks decreases in the Swap phase

�   If a fault is detected in a Trio, the task can be executed
continuously
 The mean number of tasks does not change

28 2010.06.28 WDSN10

Markov chain of Pair & Swap

�   The performance is defined as the mean number of tasks
which can be executed at the state
�   If a fault is detected in any pairs, the mismatched task must

be re-executed
 The mean number of tasks decreases in the Swap phase

�   If a fault is detected in a Trio, the task can be executed
continuously
 The mean number of tasks does not change

29 2010.06.28 WDSN10

Markov chain of dynamic TMR
�   Dynamic TMR in which three processor cores are

dynamically coupled as the number of active cores
decreases
�   When the number of active cores is 3m+2, the remaining 2 cores

compose a pair
�   When the number of active cores is 3m+1, a TMR and the remaining 1

core compose 2 pairs

�   If the number of cores is the same as 2n=3m at the initial state, the
mean number of tasks of the proposed P&S is 1.5 times larger

2010.06.28 WDSN10 30

Markov chain of static TMR

31 20110.06.28 WDSN10

�   When a permanent
fault occurs in any
TMR

 The remaining two
cores compose a pair
and compare their
results each other

�   When a permanent
fault occurs in any
pair

 Both two processor
cores cannot be used

MCTF

32 2001100..0066..288 WDSN10

0

5

10

15

20

25

30

35

2 5 8 11

14

17

20

23

26

29

32

35

38

41

44

47

50

53

56

59

62

Pair&Swap
Dynamic TMR
Static TMR

Initial number of cores

Permanent : λ=1.0x10-9

Transient : ε=1.0x10-7

MCTF ratio

33 2010.06.28 WDSN10

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

2 5 8 11

14

17

20

23

26

29

32

35

38

41

44

47

50

53

56

59

62

Pair&Swap/
Dynamic TMR
Pair&Swap/
Static TMR

�   Advantage
�   Achieves about 1.4 times larger Mean Computation To

Failure than dynamic TMR as the number of cores at
the initial state increases

�   Overhead
�   Comparison, check pointing, and task swapping use

the system bus
 It might become a serious bottle-neck with an increasing
number of processors

2010.06.28 WDSN10 34

Evaluation summary

Conclusion
�   Pair & Swap

�   Enables graceful degradation
�   Tolerates both transient faults and permanent faults
�   Requires only one extra task execution for the swap

phase to decide whether the fault is transient or
permanent and identify the failure core

�   Achieves about 1.4 times larger Mean Computation To
Failure than dynamic TMR as the number of cores at
the initial state increases

2010.06.28 WDSN10 35

On going issues
�   Evaluate the overhead

�   Task migration
�  Data size, overhead time
�  Waiting time for synchronization

�   Checkpoint

�   Implementation in real hardware
�   Use V850E* processor core and implement the

proposed scheme based on the NoC (Network-on-
Chip) architecture

2010.06.28 WDSN10 36

Killer application
�   Sensor ‒ controller ‒ actuator system

�   Each program size is small
�   What should be compared for replicated task execution is

only output value
�   Home electronics, …

�   The proposed scheme requires to execute tasks
twice when a fault is detected

 it is not suitable for hard-deadline-based application
since the throughput is required to be twice larger
than the normal execution

2010.06.28 WDSN10 37

0
0,2
0,4
0,6
0,8

1

0 10 20 30 40

Reliability

TMR*2
pair & swap

Time(×10^9)

Reliability

38

4321

Reliability of 6-cores CMP

2010.06.28 WDSN10

Execution steps
1.  Executes a given task based on the task assignment table which

contains a list of all the tasks to be executed and the corresponding
list of cores assigned to each task

2.  Exchanges execution results between cores in each pair
3.  Compares its execution results with the partnerʼs results
4.  Sends the comparison result to the decision unit
5.  Receives comparison results of all the pairs which are broadcasted by

the decision unit
6.  Updates the task assignment table
7.  Makes checkpoint data and stores it in the shared memory when its

comparison result matches
8.  Loads the corresponding checkpoint data from the shared memory

when its comparison result mismatches or it belongs to the swapping
pair

39
Time

Task A (i) Task A (i+1) Task A (i+2)

2010.06.28 WDSN10

Compare Checkpoint Compare Checkpoint Compare Checkpoint

�  Digital relays in the power distribution
network
�  The number of processor unit failure is high

2010.06.28 WDSN10 40

Fault analysis

�  Digital relays in the power distribution
network
�  The number of processor unit failure is high

2010.06.28 WDSN10 41

Fault analysis

Task assignment table

42 2010.06.28 WDSN10

Trio: Swap phase

Core1

Core2

43

Task
A(i)

Task
A(i)

Core3
Task
A(i)

Comparison
Task A(i)

2010.06.28 WDSN10

pair phase

Task
A(i+1)

Task
A(i+1)

Task
A(i+1)

Comparison
Task A(i+1)

swap phase pair phase

Detect a fault.
The failure core can be identified
as the one that is included in both
of the mismatched pairs

Continue execution.
There is no need to
swap pairs in the trio

�   Transient fault case

Trio: Fault location (1)

Core1

Core2

44

Task
A(i)

Task
A(i)

Core3
Task
A(i)

Comparison
Task A(i)

2010.06.28 WDSN10

pair phase

Task
A(i+1)

Task
A(i+1)

Task
A(i+1)

Comparison
Task A(i+1)

swap phase pair phase

In the end of the Swap phase,
all comparison results match

It can be decided that
the fault was transient

 “Trio” continues
executing the same
tasks by starting a

new Pair phase

�   Permanent fault case

Trio: Fault location (2)

Core1

Core2

45

Task
A(i)

Task
A(i)

Core3
Task
A(i)

Comparison
Task A(i)

2010.06.28 WDSN10

pair phase

Task
A(i+1)

Task
A(i+1)

Task
A(i+1)

Comparison
Task A(i+1)

swap phase pair phase

In the end of the Swap phase,
two of the three comparison

results mismatch similarly to the
comparison in the pair phase

Task
A(i+2)

Task
A(i+2)

It can be decided that the
fault was permanent

 Stop using the failure core:
Core1

