
2010.06.28 1 

Pair & Swap : An Approach to  
Graceful Degradation for  

Dependable Chip Multiprocessors 

Masashi Imai (miyabi@hal.rcast.u-tokyo.ac.jp) 
Tomohide Nagai (nagai@hal.rcast.u-tokyo.ac.jp) 

Takashi Nanya (takashi.nanya@canon.co.jp) 

WDSN10



Agenda 
  Introduction 

 Related works 
 Pair & Swap 

 Concept 
 Hardware model 
 Execution steps 
 Comparison mechanism 
 Task management mechanism 

 Evaluation 
 Conclusion 

2010.06.28 WDSN10 2 



  VLSI technology scaling 
 The performance improvement of a single processor 
is limited due to clock skew, power dissipation, ILP, 
and complexity 

  CMP (Chip Multi-Processor) 
  Integrates multiple processor cores in a single chip 
  CMP is a promising VLSI architecture, not only for 
high performance but also for reducing power 
dissipation 

  Even if a processor core becomes faulty, the 
remaining cores can continue to operate 
 It is not efficient to replace the entire CMP chip 
immediately when a permanent fault occurs 

2010.06.28 WDSN10 3 

Background & Motivation 



  We consider CMP systems as non-repairable 
systems and present an approach to graceful 
degradation for dependable CMP 

  Dual module redundancy (DMR) 
  Can detect faults by comparing the result of tasks 
  The number of tasks in N-cores CMP : N/2  

  Triple module redundancy (TMR) 
  Can mask faults 
  Can identify a failure core 
  The number of tasks in N-cores CMP : N/3 

 Pair-based scheme for dependable CMP in 
order to achieve high-performance 

2010.06.28 WDSN10 4 

Background & Motivation 



Related works 
 Single-processor SMT devices 

 RMT (Redundant MultiThreading) [Nirmal98] 
 AR-SMT (Active-stream/Redundant-stream 
Simultaneous MultiThreading) [Eric99] 

 A tme redundancy techniques which compares the 
results of a leading thread called A-thread with the 
results of a trailing thread called R-thread 

 SRT (Simultaneous and Redundantly 
Threaded) [Reinhardt00] 

 Executes two identical copies of the same program 
as independent threads and compares their results 

 SRTR (SRT with Recovery) [Vijaykumar02] 

2010.06.28 WDSN10 5 



Related works 
  Dual-processor devices which indicate both a 
dual-core CMP chip and different dies 
 Lockstep techniques [Nicholas93, Timothy99, Reorda09] 

 Assumes that an error in either processor will 
cause a difference between the states of the two 
processors 

 Watchdog processors [Mahmod88] 
 DIVA (Dynamic Implementation Verification 
Architecture) [Austin99] 

 Employs a high-performance processor core as a 
leading core and a low-performance core as a 
trailing checker core 

2010.06.28 WDSN10 6 



Related works 
  CMP devices 

  CRT (Chip-level Redundant Threading) [Mukherjee02] 
  Applies SRTʼs detection techniques to CMPs 

  CRTR (CRT with Recovery) [Mohamed03] 
  Extends the CRT for transient-fault detection 

  DCR (Dual Core Redundancy) [Gong08] 
  Extends the CRT by adding HW implemented context saving 
and recovery 

  TCR (Triple Core Redundancy) [Gong08] 
  Extends three copies of a given program on a leading thread, a 
middle thread, and a trailing thread 

  DCC (Dynamic Core Coupling) [Christopher07] 
  Allows arbitrary CMP cores to verify each otherʼs execution 
while requiring no dedicated cross-core communication 
channels or buffers 
  The basic concept of our method is similar to DCC, while DCC 
employs a TMR using hot spares in order to isolate a failure 
core and recovery its task 

2010.06.28 WDSN10 7 



Agenda 
  Introduction 

 Related works 
 Pair & Swap 

 Concept 
 Hardware model 
 Execution steps 
 Comparison mechanism 
 Task management mechanism 

 Evaluation 
 Conclusion 

2010.06.28 WDSN10 8 



Fault model 
  Single-core fault 

  A fault can occur only in a single core at a time 

  Permanent fault 
  We must identify the failure core and stop using it 

  Transient fault 
  The core in which a transient fault occurs can be 
recovered by re-executing from the latest checkpoint 
 We do not have to stop using it immediately 

  Generally, transient faults tend to occur much more 
frequently than permanent faults 

2010.06.28 WDSN10 9 



  Processor-level fault tolerance technique for CMPs which 
consists of two phases 

  Pair phase : replication and comparison 
  Two identical copies of a given task are executed on a pair 
of two processor cores and the results are compared 
  If no fault is detected, each core repeats a period of 
execution and comparison 

  Swap phase : swap and retry 
  Partners of the mismatched pair are swapped with another 
pair and mismatched task is re-executed from the latest 
checkpoint 
  It is decided whether the fault is transient or permanent in 
the end of the swap phase 

  Permanent fault: the failure core is identified and isolated to 
reconfigure the entire CMP system for continuous operation in 
a degraded mode 
  Transient fault: the swapped pairs continue their tasks without 
any reconfiguration in the next pair phase 

2010.06.28 WDSN10 10 

Pair & Swap 



Target model 
1.  More than four cores in order to swap partners 
2.  A stable storage in order to retry the mismatched task 

from the latest correct checkpoint 
  A shared memory is used as the stable storage and the correct 

checkpoint data is stored in the shared memory 
3.  A non-faulty decision unit which decides the comparison 

results of all the pairs in order to generate consistent 
comparison results 
  It is needed because a pair of two cores in which a fault may 

occur cannot generate a consistent comparison result by 
themselves 

2010.06.28 WDSN10 11 



Core1 Task A(i)

Pair & Swap: Pair phase  

Core2 

Core3 

Core4 

Task A(i)

Compare & CP period

12 

Task B(i)

Task B(i)

Comparison 
Task A(i) 
Task B(i) 

2010.06.28 WDSN10

pair phase

Compare

Checkpoint



Core1 Task A(i)

Pair & Swap: Pair phase  

Core2 

Core3 

Core4 

Task A(i)

Compare & CP period

13 

Task B(i)

Task B(i)

Comparison 
Task A(i) 
Task B(i) 

2010.06.28 WDSN10

pair phase

Compare

Checkpoint

Task A(i+1)

Task A(i+1)

Task B(i+1)

Task B(i+1)

Comparison 
Task A(i+1) 
Task B(i+1) 



Core1 Task A(i)

Pair & Swap: Pair phase  

Core2 

Core3 

Core4 

Task A(i)

Compare & CP period

14 

Task B(i)

Task B(i)

Comparison 
Task A(i) 
Task B(i) 

2010.06.28 WDSN10

pair phase

Compare

Checkpoint

Task A(i+1)

Task A(i+1)

Task B(i+1)

Task B(i+1)

Comparison 
Task A(i+1) 
Task B(i+1) 

Task A(i+2)

Task A(i+2)

Task B(i+2)

Task B(i+2)

Comparison 
Task A(i+2) 
Task B(i+2) 

Task A(i+3)

Task A(i+3)

Task B(i+3)

Task B(i+3)

Comparison 
Task A(i+3) 
Task B(i+3) 



Core1 Task A(i)

Pair & Swap: Swap phase 

Core2 

Core3 

Core4 

Task A(i)

Task B(i)

Task B(i)

Comparison 
Task A(i) 
Task B(i) 

2010.06.28 15 WDSN10

pair phase swap phase

Detect a fault   

Compare

Checkpoint

Rollback (load CP)



Core1 Task A(i)

Pair & Swap: Swap phase 

Core2 

Core3 

Core4 

Task A(i)

Task B(i)

Task B(i)

Task A(i)

Task B(i+1)

Task A(i)

Comparison 
Task A(i) 
Task B(i) 

Task B(i+1)

Task migration 

Task A(i) is re-executed 

2010.06.28 16 WDSN10

pair phase swap phase

Compare

Checkpoint

Rollback (load CP)



  Transient fault case 

Core1 Task A(i)

Pair & Swap: Fault location (1) 

Core2 

Core3 

Core4 

Task A(i)

Task B(i)

Task B(i)

Task A(i)

Task B(i+1)

Task A(i)

Comparison 
Task A(i) 
Task B(i) 

Task B(i+1)

2010.06.28 17 WDSN10

pair phase swap phase

Compare

Checkpoint

Rollback (load CP)

Comparison 
Task A(i) 

Task B(i+1) 

It can be decided that 
the fault was transient 

 the two pairs 
continue executing the 
same tasks by starting 

a new Pair phase 

In the end of the Swap phase, 
both comparison results match 



  Transient fault case 

Core1 Task A(i)

Pair & Swap: Fault location (1) 

Core2 

Core3 

Core4 

Task A(i)

Task B(i)

Task B(i)

Task A(i)

Task B(i+1)

Task A(i)

Comparison 
Task A(i) 
Task B(i) 

Task B(i+1)

2010.06.28 18 WDSN10

pair phase swap phase

Comparison 
Task A(i) 

Task B(i+1) 

pair phase

Task A(i+1)

Task B(i+2)

Task A(i+1)

Task B(i+2)

Comparison 
Task A(i+1) 
Task B(i+2) 

Task A(i+2)

Task B(i+3)

Task A(i+2)

Task B(i+3)

Comparison 
Task A(i+2) 
Task B(i+3) 



  Permanent fault case 

Core1 Task A(i)

Pair & Swap: Fault location (2) 

Core2 

Core3 

Core4 

Task A(i)

Task B(i)

Task B(i)

Task A(i)

Task B(i+1)

Task A(i)

Comparison 
Task A(i) 
Task B(i) 

Task B(i+1)

2010.06.28 19 WDSN10

pair phase swap phase

Compare

Checkpoint

Rollback (load CP)

Comparison 
Task A(i) 

Task B(i+1) 

The failure core is identified as 
the one that executed the 

mismatched tasks in both the 
Pair phase and the Swap phase. 

 stop using the Core2 

In the end of the Swap phase, the 
comparison result of Task A(i) 

mismatches 



  Permanent fault case 

Core1 Task A(i)

Pair & Swap: Fault location (2) 

Core2 

Core3 

Core4 

Task A(i)

Task B(i)

Task B(i)

Task A(i)

Task B(i+1)

Task A(i)

Comparison 
Task A(i) 
Task B(i) 

Task B(i+1)

2010.06.28 20 WDSN10

pair phase swap phase

Compare

Checkpoint

Rollback (load CP)

Comparison 
Task A(i) 

Task B(i+1) 



  Permanent fault case 

Core1 Task A(i)

Pair & Swap: Fault location (2) 

Core2 

Core3 

Core4 

Task A(i)

Task B(i)

Task B(i)

Task A(i)

Task B(i+1)

Task A(i)

Comparison 
Task A(i) 
Task B(i) 

Task B(i+1)

2010.06.28 21 WDSN10

pair phase swap phase

Compare

Checkpoint

Rollback (load CP)

Comparison 
Task A(i) 

Task B(i+1) 

Task A(i+1)

Task A(i+1)

Task A(i+1)

pair phase



“Trio” configuration 
  When a permanent fault occurs, the number of 
processor cores may become odd (2m+1) 
  It can compose m-1 pairs using 2(m-1) cores and 3 
processor cores remain 
 3 cores execute the same task and compare their 
results each other: “Trio” configuration 

22 2010.06.28 WDSN10

Core1 Task A(i) Task A(i+1) Task A(i+2) Task A(i+4)Task A(i+3)

Core2 

Core3 

Task A(i) Task A(i+2) Task A(i+3)Task A(i+1) Task A(i+4)

pair phase

Task A(i) Task A(i+2) Task A(i+3)Task A(i+1) Task A(i+4)



Comparison mechanism 
  What should be compared for replicated 

task execution depends on the application 
  all register file, status registers, and memory 

updates 
  the output value of the system may only be 

required 
  Two processor cores in each pair exchange 

the compressed data over the system bus 
  MPI can be used 

  Each core compares its data with partnerʼs 
data each other 

23 

Exec Exec 

Compare Compare 

Core Core

The result 
of tasks 

2010.06.28 WDSN10

Coorree1  Coorree2  
No fault occurs Task execution No error No error 

Comparison result MMATTCH  MATTCH  
A fault occurs during 
task execution  

Task execution No error Error 
Comparison result MISMATTCH  MATTCH  oorr  

MISMATTCH  
A fault occurs during 
comparison 

Task execution No error No Error 
Comparison result MMATTCH  MISMATTCH  



Comparison mechanism 
  The decision unit 

  Gathers the comparison results from 
all the cores 
  Decides whether the results match or 
mismatch for all the pairs like the 
following table 

  A Comparison result of each core can be 
represented by one bit. 

  Broadcasts its results to all the cores 

24 

Corre1 commppaarrison rresullt Corre2 commppaarrison rresullt DDecision unit outpput 

Match Match Match 
Match Mismatch Mismatch 

Mismatch Match Mismatch 
Mismatch Mismatch Mismatch 

Exec Exec 

Compare Compare 

Core Core

Decision 

The result 
of tasks 

The result of 
comparison 

Broadcast to 
all the cores 

2010.06.28 WDSN10



Task assignment table 
  Each processor core manages the 

core paring and the task assignment 
table 
  There is no special core which controls the 

entire system 
  Tasks have priority and the list is 

ordered by the priority 

25 

Priority

High

Low

Taasskk  Assssiiggnneedd  
ccoorreess  

A 0, 1 
B 2, 3 
C 4, 5 
D 6, 7 

2010.06.28 WDSN10

  When a mismatched task is detected in the comparison results 
which are broadcasted by the decision unit in the Pair phase, each 
core updates the table for the following Swap phase 

  The swapping pair is selected as follows; 
1.  If there is a Trio in the table, the Trio is selected 
2.  The pair which executes the lowest priority task except it 

own pair is selected 
  Permanent fault  The lowest task in the table cannot be 

executed in the next Pair phase 



Agenda 
  Introduction 

 Related works 
 Pair & Swap 

 Concept 
 Hardware model 
 Execution steps 
 Comparison mechanism 
 Task management mechanism 

 Evaluation 
 Conclusion 

2010.06.28 WDSN10 26 



Evaluation 
  Evaluate the expected value of the computation capability to 

failure called “MCTF (Mean Computation To Failure)” using 
the Markov chains in order to compare the performance 

  Comparison targets 
1. Proposed Pair & Swap 
2. Dynamic TMR 
3. Static TMR 

  Failure rate 
  Permanent : λ=1.0x10-9 

  Transient : ε=1.0x10-7 

  Fault detection, fault location, and reconfiguration are successfully 
executed with a probability of 1 

27 2010.06.28 WDSN10

MCTF = (Performance(i) × Pi (t)dt)
0

∞

∫
i≠ failure

∑



Markov chain of Pair & Swap 

  The performance is defined as the mean number of tasks 
which can be executed at the state 
  If a fault is detected in any pairs, the mismatched task must 
be re-executed 
 The mean number of tasks decreases in the Swap phase 
  If a fault is detected in a Trio, the task can be executed 
continuously 
 The mean number of tasks does not change 

28 2010.06.28 WDSN10



Markov chain of Pair & Swap 

  The performance is defined as the mean number of tasks 
which can be executed at the state 
  If a fault is detected in any pairs, the mismatched task must 
be re-executed 
 The mean number of tasks decreases in the Swap phase 
  If a fault is detected in a Trio, the task can be executed 
continuously 
 The mean number of tasks does not change 

29 2010.06.28 WDSN10



Markov chain of dynamic TMR 
  Dynamic TMR in which three processor cores are 

dynamically coupled as the number of active cores 
decreases 
  When the number of active cores is 3m+2, the remaining 2 cores 

compose a pair 
  When the number of active cores is 3m+1, a TMR and the remaining 1 

core compose 2 pairs 

  If the number of cores is the same as 2n=3m at the initial state, the 
mean number of tasks of the proposed P&S is 1.5 times larger 

2010.06.28 WDSN10 30 



Markov chain of static TMR 

31 20110.06.28  WDSN10

  When a permanent 
fault occurs in any 
TMR 

 The remaining two 
cores compose a pair 
and compare their 
results each other 

  When a permanent 
fault occurs in any 
pair 

 Both two processor 
cores cannot be used 



MCTF 

32 2001100..0066..288 WDSN10

0 

5 

10 

15 

20 

25 

30 

35 

2 5 8 11
 

14
 

17
 

20
 

23
 

26
 

29
 

32
 

35
 

38
 

41
 

44
 

47
 

50
 

53
 

56
 

59
 

62
 

Pair&Swap 
Dynamic TMR 
Static TMR 

Initial number of cores

Permanent : λ=1.0x10-9 

Transient : ε=1.0x10-7



MCTF ratio 

33 2010.06.28  WDSN10

1 

1,1 

1,2 

1,3 

1,4 

1,5 

1,6 

1,7 

1,8 

2 5 8 11
 

14
 

17
 

20
 

23
 

26
 

29
 

32
 

35
 

38
 

41
 

44
 

47
 

50
 

53
 

56
 

59
 

62
 

Pair&Swap/
Dynamic TMR 
Pair&Swap/
Static TMR 



  Advantage 
  Achieves about 1.4 times larger Mean Computation To 
Failure than dynamic TMR as the number of cores at 
the initial state increases 

  Overhead 
  Comparison, check pointing, and task swapping use 
the system bus 

 It might become a serious bottle-neck with an increasing 
number of processors 

2010.06.28 WDSN10 34 

Evaluation summary 



Conclusion 
  Pair & Swap 

  Enables graceful degradation 
  Tolerates both transient faults and permanent faults 
  Requires only one extra task execution for the swap 
phase to decide whether the fault is transient or 
permanent and identify the failure core 
  Achieves about 1.4 times larger Mean Computation To 
Failure than dynamic TMR as the number of cores at 
the initial state increases 

2010.06.28 WDSN10 35 



On going issues 
  Evaluate the overhead 

  Task migration 
 Data size, overhead time 
 Waiting time for synchronization 

  Checkpoint 

  Implementation in real hardware 
  Use V850E* processor core and implement the 
proposed scheme based on the NoC (Network-on-
Chip) architecture 

2010.06.28 WDSN10 36 



Killer application 
  Sensor ‒ controller ‒ actuator system 

  Each program size is small 
  What should be compared for replicated task execution is 
only output value 

  Home electronics, … 

  The proposed scheme requires to execute tasks 
twice when a fault is detected 

 it is not suitable for hard-deadline-based application 
since the throughput is required to be twice larger 
than the normal execution 

2010.06.28 WDSN10 37 



0 
0,2 
0,4 
0,6 
0,8 

1 

0 10 20 30 40 

Reliability 

TMR*2 
pair & swap 

Time( ×10^9)

Reliability

38 

4321   

Reliability of 6-cores CMP 

2010.06.28 WDSN10



Execution steps 
1.  Executes a given task based on the task assignment table which 

contains a list of all the tasks to be executed and the corresponding 
list of cores assigned to each task 

2.  Exchanges execution results between cores in each pair 
3.  Compares its execution results with the partnerʼs results 
4.  Sends the comparison result to the decision unit 
5.  Receives comparison results of all the pairs which are broadcasted by 

the decision unit 
6.  Updates the task assignment table 
7.  Makes checkpoint data and stores it in the shared memory when its 

comparison result matches 
8.  Loads the corresponding checkpoint data from the shared memory 

when its comparison result mismatches or it belongs to the swapping 
pair 

39 
Time

Task A (i) Task A (i+1) Task A (i+2) 

2010.06.28 WDSN10

Compare Checkpoint Compare Checkpoint Compare Checkpoint 



 Digital relays in the power distribution 
network 
 The number of processor unit failure is high 

2010.06.28 WDSN10 40 

Fault analysis 



 Digital relays in the power distribution 
network 
 The number of processor unit failure is high 

2010.06.28 WDSN10 41 

Fault analysis 



Task assignment table 

42 2010.06.28 WDSN10



Trio: Swap phase 

Core1 

Core2 

43 

Task 
A(i) 

Task 
A(i) 

Core3 
Task 
A(i) 

Comparison 
Task A(i) 

2010.06.28  WDSN10

pair phase

Task 
A(i+1) 

Task 
A(i+1) 

Task 
A(i+1) 

Comparison 
Task A(i+1) 

swap phase pair phase

Detect a fault. 
The failure core can be identified 
as the one that is included in both 
of the mismatched pairs   

Continue execution. 
There is no need to 
swap pairs in the trio 



  Transient fault case 

Trio: Fault location (1) 

Core1 

Core2 

44 

Task 
A(i) 

Task 
A(i) 

Core3 
Task 
A(i) 

Comparison 
Task A(i) 

2010.06.28  WDSN10

pair phase

Task 
A(i+1) 

Task 
A(i+1) 

Task 
A(i+1) 

Comparison 
Task A(i+1) 

swap phase pair phase

In the end of the Swap phase, 
all comparison results match 

It can be decided that 
the fault was transient 

 “Trio” continues 
executing the same 
tasks by starting a 

new Pair phase 



  Permanent fault case 

Trio: Fault location (2) 

Core1 

Core2 

45 

Task 
A(i) 

Task 
A(i) 

Core3 
Task 
A(i) 

Comparison 
Task A(i) 

2010.06.28  WDSN10

pair phase

Task 
A(i+1) 

Task 
A(i+1) 

Task 
A(i+1) 

Comparison 
Task A(i+1) 

swap phase pair phase

In the end of the Swap phase, 
two of the three comparison 

results mismatch similarly to the 
comparison in the pair phase 

Task 
A(i+2) 

Task 
A(i+2) 

It can be decided that the 
fault was permanent 

 Stop using the failure core: 
Core1 


