

Introduction Related works Pair & Swap → Concept Hardware model Execution steps Comparison mechanism Task management mechanism Evaluation Conclusion 2010.06.28 2 **WDSN10**

VLSI technology scaling

→ The performance improvement of a single processor is limited due to clock skew, power dissipation, ILP, and complexity

CMP (Chip Multi-Processor)

- Integrates multiple processor cores in a single chip
- CMP is a promising VLSI architecture, not only for high performance but also for reducing power dissipation
- Even if a processor core becomes faulty, the remaining cores can continue to operate
- → It is not efficient to replace the entire CMP chip immediately when a permanent fault occurs

2010.06.28

WDSN10

- We consider CMP systems as non-repairable systems and present an approach to graceful degradation for dependable CMP
- Dual module redundancy (DMR)
 - Can detect faults by comparing the result of tasks
 - ✤ The number of tasks in N-cores CMP : N/2
- Triple module redundancy (TMR)
 - Can mask faults
 - Can identify a failure core
 - ✤ The number of tasks in N-cores CMP : N/3
- → Pair-based scheme for dependable CMP in order to achieve high-performance 2010.06.28

Dual-processor devices which indicate both a dual-core CMP chip and different dies Lockstep techniques [Nicholas93, Timothy99, Reorda09] Assumes that an error in either processor will cause a difference between the states of the two processors Watchdog processors [Mahmod88] DIVA (Dynamic Implementation Verification) Architecture) [Austin99] Employs a high-performance processor core as a leading core and a low-performance core as a trailing checker core

- Single-core fault
 - ♦ A fault can occur only in a single core at a time
- Permanent fault
 - ✤ We must identify the failure core and stop using it
- Transient fault
 - The core in which a transient fault occurs can be recovered by re-executing from the latest checkpoint
 - \rightarrow We do not have to stop using it immediately
 - Generally, transient faults tend to occur much more frequently than permanent faults

- Processor-level fault tolerance technique for CMPs which consists of two phases
 Pair phase : replication and comparison
 Two identical copies of a given task are executed on a pair of two processor cores and the results are compared
 - If no fault is detected, each core repeats a period of execution and comparison

Swap phase : swap and retry

- Partners of the mismatched pair are swapped with another pair and mismatched task is re-executed from the latest checkpoint
- It is decided whether the fault is transient or permanent in the end of the swap phase
 - Permanent fault: the failure core is identified and isolated to reconfigure the entire CMP system for continuous operation in a degraded mode
 - Transient fault: the swapped pairs continue their tasks without any reconfiguration in the next pair phase

2010.06.28

- 1. More than four cores in order to swap partners
- 2. A stable storage in order to retry the mismatched task from the latest correct checkpoint
 - A shared memory is used as the stable storage and the correct checkpoint data is stored in the shared memory
- 3. A non-faulty decision unit which decides the comparison results of all the pairs in order to generate consistent comparison results
 - It is needed because a pair of two cores in which a fault may occur cannot generate a consistent comparison result by themselves

Pair & Swap: Pair phase

Pair & Swap: Pair phase

Pair & Swap: Pair phase

Pair & Swap: Swap phase

Pair & Swap: Swap phase

Pair & Swap: Fault location (1)

Comparison mechanism

Introduction ➡ Related works Pair & Swap ✦ Concept → Hardware model ✦ Execution steps Comparison mechanism Task management mechanism Evaluation Conclusion 2010.06.28 26 **WDSN10**

Evaluate the expected value of the computation capability to 1 failure called "MCTF (Mean Computation To Failure)" using the Markov chains in order to compare the performance $MCTF = \sum (Performance(i) \times \int P_i(t)dt)$ *i≠ failure* Comparison targets 1. Proposed Pair & Swap 2. Dynamic TMR 3. Static TMR Failure rate + Permanent : $\lambda = 1.0 \times 10^{-9}$ + Transient : $\varepsilon = 1.0 \times 10^{-7}$ Fault detection, fault location, and reconfiguration are successfully executed with a probability of 1 2010.06.28 27 WDSN10

KOLL Markov chain of Pair & Swap

KOLL Markov chain of Pair & Swap

KOLL Markov chain of dynamic TMR

Dynamic TMR in which three processor cores are dynamically coupled as the number of active cores decreases

- When the number of active cores is 3m+2, the remaining 2 cores compose a pair
- When the number of active cores is 3m+1, a TMR and the remaining 1 core compose 2 pairs

If the number of cores is the same as 2n=3m at the initial state, the mean number of tasks of the proposed P&S is 1.5 times larger
 2010.06.28 WDSN10 30

Markov chain of static TMR

Advantage

 Achieves about 1.4 times larger Mean Computation To Failure than dynamic TMR as the number of cores at the initial state increases

Overhead

- Comparison, check pointing, and task swapping use the system bus
 - → It might become a serious bottle-neck with an increasing number of processors

Pair & Swap

- Enables graceful degradation
- Tolerates both transient faults and permanent faults
- Requires only one extra task execution for the swap phase to decide whether the fault is transient or permanent and identify the failure core
- Achieves about 1.4 times larger Mean Computation To Failure than dynamic TMR as the number of cores at the initial state increases

- Evaluate the overhead
 - Task migration
 - Data size, overhead time
 - Waiting time for synchronization
 - Checkpoint
- Implementation in real hardware
 - Use V850E* processor core and implement the proposed scheme based on the NoC (Network-on-Chip) architecture

Killer application

Sensor – controller – actuator system

- Each program size is small
- What should be compared for replicated task execution is only output value
- ✤ Home electronics, …
- The proposed scheme requires to execute tasks twice when a fault is detected
 - → it is not suitable for hard-deadline-based application since the throughput is required to be twice larger than the normal execution

Task assignment table

Trio: Swap phase

Trio: Fault location (1)

Trio: Fault location (2)

