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Abstract 

 
Reconfigurable architectures represent a promising 

option for tolerating the extremely high defect and 
failure rates of emerging nanodevices. Different 
approaches have been devised throughout the years for 
coping with the occurrence of defects and faults in 
Field-Programmable Gate Arrays (FPGAs). However, 
due to the expected defect and fault rates, many of 
these methodologies cannot be directly applied to 
reconfigurable nanocircuits or are useless if applied in 
isolation. Computer Aided Deisgn (CAD) tools and 
new design flows for reconfigurable applications 
should be aware of the existing defects in nanofabrics 
and automatically include all the mechanisms required 
to tolerate the occurrence of faults. This work explores 
the existing methodologies that are eligible to tolerate 
defects and operational faults, and how they should be 
interwoven to increase the confidence the user can put 
on the correct operation of nanocircuits. 
 
1. Introduction 
 

The 2007 International Technology Roadmap for 
Semiconductors (ITRS) [1] expects to scale CMOS to 
11 nm by 2022. Consequently, other physical 
mechanisms should be considered to extend scaling 
beyond the ITRS expectations. 

Figure 1 shows a bottom-up representation of a 
system’s hierarchy that summarizes different 
approaches which, combined in some yet to be defined 
way, may improve the current information processing 
paradigm. Emerging technologies such as 1D structures 
(nanowires (NW) and carbon nanotubes (CNT)), Single 
Electron Transistors (SET), Molecular Devices, 
Ferromagnetic Devices, and Spin Transistors, are 
expected to achieve densities of 1012 devices/cm2 [2] in 
comparison with the 1010 transistors/cm2 CMOS limit. 

 

 
Figure 1. CMOS vs. emerging nanodevices [1]. 
 
However, the manufacturing process followed by 

many of these devices, which rely on self-assembly and 
self-alignment, largely increases the defect rate of the 
chip. Expected defect densities are around 10-1 per 
device while they are only 10-7–10-6 per device 
(transistor) for present-day scaled CMOS [3]. So, 
testing the chip and rejecting it in the case of finding a 
small number of defects will no longer be an option. It 
seems that once again the old problem of how to 
develop reliable chips from unreliable devices [4] is in 
the limelight. It will be necessary to develop new 
solutions, at an architectural level, that can tackle the 
extremely large amount of defects expected. 

Furthermore, new devices are likely to be fragile 
and very sensitive to their physical environment due to 
cosmic radiation, electromagnetic noise, thermal 
effects, and background charges. Hence, in order to 
exert the potential of projected densities, new 
architectural solutions must also be able to tolerate the 
occurrence of transient and permanent faults. 

At present, one of the most promising architectures 
for nanocircuits is based on reconfigurable fabrics such 
as Programmable Logic Arrays (PLAs) [5] and Field-
Programmable Gate Arrays (FPGAs) [6]. On the one 
hand, the stochastic nature of the manufacturing 
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process mainly allows building regular structures, such 
as 2D crossbars. Reconfigurable fabrics consist of a set 
of programmable logic resources that are 
interconnected by means of routing elements. These 
resources can be programmed or configured to change 
the functionality provided by the circuit. All of them 
may be implemented using regular structures which 
may act as PLA (for logic), interconnection (for 
routing), and memory (for configuration) cores. On the 
other hand, the reconfigurable capabilities of these 
structures make them very interesting to tolerate the 
high rate of manufacturing defects or the occurrence of 
operational faults in nanodevice-based circuits. 

Although different approaches have already been 
proposed so far for defect and fault tolerance in 
FPGAs, the common design flow for reconfigurable 
application shown in Figure 2 should be modified to 
deploy those approaches on nanodevice-based circuits. 
This design flow first extracts, via a synthesis process, 
the interconnected set of logic elements the designer 
has specified by means of a model. The resources 
required to implement that model are obtained after 
mapping those logic elements to the selected 
technology. After that, these resources are distributed 
(placed) among the free resources of the FPGA and 
their interconnection is performed (routed). The result 
of this process is a configuration file that can be used to 
(re-)program the reconfigurable device. 

 

 
Figure 2. Reconfigurable computing design flow. 
 
This paper focuses on how this design must evolve 

to obtain reliable applications out of unreliable 
nanodevice-based circuits. Section 2 introduces some 
work related to the applicability of fault tolerance 
techniques to nanocircuits. Section 3 and Section 4 
review different FPGA-based defect and fault tolerance 
techniques that could be applied to these new 
architectures. Finally, Section 5 summarises the 
proposed defect and fault tolerance driven design flow. 
 
2. Related work 
 

Different redundancy-based techniques to tolerate 
high defect/failure rates in chips with densities of 1012 
devices were analysed in [7]. The R-fold redundancy 
(RMR) and the NAND Multiplexing are generic 
techniques that were already proposed by von 
Neumann fifty years ago [4], and Reconfiguration is a 
technique specifically developed for FPGA systems. 

Figure 3 compares the three methodologies in terms 
of the level of redundancy required for a given 

defect/failure rate to ensure that a chip with 1012 
devices will work with a 90% of probability. Classical 
techniques do not behave very well since, for instance, 
a defect rate between 10-7–10-6 (close to nowadays 
values) requires a redundancy level of 1000 for the 
RMR technique and only 109 devices can be used for 
logic implementation. NAND multiplexing can tolerate 
even higher defect/failure rates. Reconfiguration seems 
more promising, since it can tolerate defect/failure rates 
up to 10-1 which are close to what is expected for 
nanodevices. However, this is achieved at the expense 
of huge redundancy levels (10000). 

 
Figure 3. Required redundancy level (R) as a function 
of the failure rate per device (pf) [7]. 

 
This clearly shows that unless defects/failures can 

be located and the system reconfigured to avoid them, 
the future use of nanodevices could be compromised. 
 
3. Defect tolerance 
 

The deployment of efficient fault tolerance 
techniques usually relies on a defect-free circuit. 
Hence, defects must be first located for the mapping, 
placement and routing processes to implement the 
desired defect-free functionality. 
 
3.1. Finding defects 
 

The offline detection and location of defects in 
reconfigurable fabrics [8] may be based on the 
programmability of the circuit or the design for 
testability (DFT). Since it is not feasible to implement a 
specific testing circuit out of nanodevices due to their 
enormous defect rate, it may be more interesting to take 
benefit of the intrinsic programmability of the circuit to 
locate its defects. Built-in self test/diagnosis (BIST/D) 
seems the most promising approach among the 
different proposed techniques [8]. 
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The FPGA-based BIST/D approach [9] divides the 
reconfigurable logic blocks into nodes that are 
configured as Test Pattern Generators (TPG), Blocks 
Under Test (BUT), or Output Response Analysers 
(ORA). The TPG, which is usually a linear feedback 
shift register (LFSR) or a counter, feeds the inputs of 
the BUT. The ORA collects and analyses the outputs of 
the BUT by means of a comparator-based or signature 
analyser. All the blocks are tested (across and down the 
FPGA) to determine whether they are defect-free or not 
and the location of existing defects. A similar approach 
can be used to locate defects in routing resources. 

This methodology should be modified to take into 
account the large defect rates of nanodevices. As only 
defect-free resources may be used to test adjacent 
neighbours, it could be impossible to determine 
whether some resources are defect-free or not. This 
leads to the definition of a measure known as recovery 
[3], which represents the percentage of defect-free 
resources that are successfully identified as such. 
Furthermore, blocks should be small enough to allow 
for a reasonable probability of being defect-free but not 
so small that no required logic could be implemented. 

This approach was adapted in [10] to a particular 
nanodevice-based structure (nanofabric). In that case, 
each block (TPG and ORA) tests the three adjacent 
blocks (BUT), which in turn test their neighbours, and 
so on, in a wave-like manner until the whole circuit has 
been tested. The result of each test is stored to build the 
defect map of the circuit (see Figure 4). This process 
can be repeated from more than one corner of the 
circuit to increase the attainable recovery. It is to note 
that the initial corner must be tested from outside the 
chip with a defect-free (probably CMOS) tester. If all 4 
corners are defective, any other block may be used at 
the cost of leaving some whole rows/columns untested. 

 
Figure 4. Wave-like BIST/D for nanocircuits [10]. 
 
Another approach, which aims at reducing the 

complexity of the TPG and the ORA, was presented in 
[11]. The BIST/D procedure is performed in parallel, 

so three stages are required to change the role played 
by each block (see Figure 5). Due to the particular 
architecture of the analysed nanofabric, three different 
TPG must be used. Thus, the final defect map must be 
derived from three partial ones. It is to note that, along 
the BIST/D procedure, a defect-free (probably CMOS) 
circuit will be required as a either TPG or ORA. 

 
Figure 5. Parallel BIST/D for nanocircuits [11]. 

 
We can conclude that BIST/D-like approaches are 

suitable to be used in nanocircuits to locate defective 
nanofabric resources. Future research should focus on 
increasing the attainable recovery, decreasing the 
execution time and the dependence on external testers, 
and reducing the size of the obtained defect map. 
 
3.2. Mapping around defects 
 

Mapping, placement and routing processes, which 
are in charge of implementing a system function, 
should be aware of the obtained defect map in order to 
avoid defective resources. Traditionally, CAD tools 
select those resources that will implement the system 
from a pool containing all the available resources of the 
FPGA. So, it is just a matter of removing the defective 
resources from that pool to ensure that the final 
implementation will be defect-free. 

In fact, a similar approach has been presented in 
[12] to handle multicore architectures in which up to 
20-30% of the cores are defective. However, more 
aggressive approaches are required to handle the 
enormous defect rate of nanotechnologies: 20-30% of 
all devices (not cores but CMOS-like transistors) will 
be defective. So, most resources are likely to contain 
defects and it is not feasible to just throw them away. 

The mapping and routing processes should 
determine whether a defective resource is still usable 
for implementing a specific system function. For 
instance, a defective routing element, which 
permanently connects two endpoints, may still be used 
if the system has to connect these precise endpoints. 
The placement process should know all this 
information to select those resources that will be finally 
used for implementing the system functionality. 

This kind of strategy is considered in [13] to use 
defective logic arrays for implementing sets of OR 
terms. As shown in Figure 6, this is reduced to a 
matching problem. 
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Figure 6. Mapping functions to a defective resource [13]. 

 
In this way it is possible to increase the actual 

recovery obtained at the defect location phase by 
effectively using defective resources that can 
accommodate the required logic. The main problem of 
this approach resides in the time required to compute 
whether the defective resource may implement the 
given system function. With 1012 devices per chip and 
defect densities of 10-1, the obtained defect map will 
easily contain about 1011 elements. So, reducing the 
size of the defect map and devising new algorithms to 
accelerate the mapping process is a must. 
 
4. Fault tolerance 
 

Previously studied techniques enable the defect-free 
implementation of a system function on reconfigurable 
nanofabrics. However, the obtained defect map is 
static, i.e. (permanent) faults occurring during system 
operation will lead to new defects that might not be 
tolerated. This is also the case of transient faults, which 
will probably affect the behaviour of the system. 

This section explores some techniques that should 
be included in a fault-tolerance aware design flow. 
 
4.1. Redundancy 
 

Although the expected failure rate remains 
unknown, it is possible to assume that it will be lower 
than the defect rate and higher than the current failure 
rate for CMOS devices. As defects have been now 
successfully tolerated, classical redundancy-based fault 
tolerance techniques may be accommodated by the 
large number of resources embedded in the nanofabric. 

In that way, every system should be designed having 
fault tolerance in mind. However, adding fault 
tolerance capabilities is not always easy for designers 
who are not dependability experts. The development of 

tools supporting the (semi-)automatic deployment of 
these mechanisms before synthesising the design 
constitutes an issue for further research. 

It is also necessary to take into account the 
particular characteristics of the reconfigurable circuits 
before implementing (placing and routing) the selected 
technique. It may happen that a single fault (a junction 
is now “on”) may affect the behaviour of more than one 
replica (it may cause a short between two inputs 
common to all replicas) and, therefore, cause a failure 
in the system. This problem must be handled by the 
CAD tool, which should distribute the system function 
among the available resources to minimise the 
probability for a fault to cause a failure. 

A reliability-oriented place and route algorithm was 
presented in [14] to improve the implementation of 
TMR and duplication with comparison with concurrent 
error detection, techniques on FPGAs. Although FPGA 
manufacturers have been usually more interested in 
defect tolerance, Xilinx has lately developed a tool to 
transform plain designs for FPGAs into TMR ones 
[15]. Similar approaches should be developed to adapt 
redundancy-based techniques to the particularities of 
each reconfigurable nanofabric. 

Although this approach will effectively tolerate the 
occurrence of transient faults in the system, in the long 
run, it will only tolerate the occurrence of a certain 
number of permanent faults. As a result, the nanocircuit 
could stop working after a relatively short amount of 
time. Due to the cost of locating new defects and 
mapping the system function each time the nanocircuit 
fails, new approaches must be developed to tolerate the 
occurrence of those permanent faults on the fly. 
 
4.2. Reconfiguration 
 

Probably, the reconfigurability is the most 
interesting capability of FPGAs. Different approaches 
were developed throughout the years to change, on the 
fly, the implemented system function, either to provide 
new functionalities or tolerate the occurrence of faults. 

Changing the functionality provided by the 
reconfigurable circuit involves re-implementing the 
new function system (map, place and route). This 
procedure requires very time consuming computations, 
so it is not sensible to run the whole process to perform 
a small change in the design, which is usually the case 
for fault tolerance. Techniques known as incremental 
synthesis [16] are aimed at reducing this time by re-
implementing only the part of the design that has really 
changed, keeping as it is the rest of the implementation. 
This should be taken into account when deploying new 
fault tolerance mechanism at run-time. 
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A related problem is that the FPGA has to be 
completely reprogrammed to change its functionality. 
That process could introduce a huge timing overhead. 
Manufacturers have tackled that issue by developing 
new families that allow for their partial configuration 
[17], i.e. only that part of the FPGA implementing the 
functionality that changes is reprogrammed. 

In this context, different FPGA-based fault tolerance 
methodologies were developed [18] to minimise the 
reconfiguration required to avoid the faulty resource 
upon detection. Tiling [19] seems a very good option 
for being applied to reconfigurable nanofabrics, since it 
does not reserve redundant resources for fault 
tolerance. Instead, different configurations are 
computed for each resource to map a given function to 
different elements within the resource. If a fault occurs, 
it is just a matter of changing the current configuration 
of the resource by an alternative one that tolerates such 
fault. Figure 7 shows a possible application of the 
Tiling approach to the logic array of Figure 6. 

 

 
 

Figure 7. Example of fault tolerance with Tiling. 
 
The occurrence of permanent faults may prevent the 

system function to be mapped to the faulty resource (a 
short in junctions 1 and 8 in Figure 7, for instance). In 
that case, any other reconfiguration technique [18], 
usually involving placing and routing again the desired 
function, should be used to reallocate the system 
function to a suitable resource. 

The main drawback of reconfiguration approaches is 
that an external processor is usually required in order to 
compute the new partial fault-free configuration. This 
computation certainly induces some timing overhead in 
the system execution. In the case of nanofabrics, this 
time can be quite significant, since a much slower 
(reliable) CMOS processor should be in charge of 
generating the new configuration. The Tiling 
methodology, which minimises the intervention of the 
external processor is, then, very interesting.  

Furthermore, reconfiguration techniques assume that 
it is possible to detect the occurrence of new faults and 
precisely locate them. Hence, it will be necessary to 
perform new defect finding processes upon fault 
detection and, after locating the fault, apply some 
reconfiguration technique to tolerate it. Again, an 
external reliable processor could be an (slow) option to 
perform this process. On-line approaches, like the one 
presented in [20], may employ unused resources of the 
reconfigurable fabric to continuously scan the rest of 
the circuit for new defects. This could eliminate the 
dependency on an external processor and decrease the 
timing overhead associated to that scanning process. It 
must be noted that the nanofabric should be 
continuously reconfigured to test all the available 
resource, those dedicated to implement the system 
function and those implementing the scanning process. 
 
5. Conclusion 
 

As it has been shown, adapting FPGA-based defect 
and fault tolerance techniques to reconfigurable 
nanofabrics will require a profound modification of 
CAD tools and their supported design flow. Figure 8 
depicts our proposed design flow and identifies open 
issues for further research that are next commented. 

 
Figure 8. Proposed defect and fault-tolerance aware 
design flow. 

 
The most notable change is that designs can not be 

implemented just once anymore. Since the defect map 
is unique for each single nanofabric, the design must be 
implemented for every considered circuit. So, reducing 
the implementation time is of prime importance. 
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Due to the expected high rates of faults occurrence, 
any design should include basic techniques for 
(transient) fault tolerance. Therefore, the possibility of 
(semi-)automatically inserting these mechanisms into 
the nanofabric, either at design- or run-time, is a must 
to assist designers who are not dependability experts. 

The extremely high defects rate involves generating 
a defect map for the selected nanofabric. This defect 
map will be used after synthesising the design to map 
the extracted logic to the underlying reconfigurable 
fabric. In this way, it is possible to use those defective 
devices that do not affect the behaviour of the system. 

The next step consists in performing a fault-
tolerance driven place and route process. It will 
distribute the logic among the available resource of the 
nanofabric taking into account its architecture. This 
will help preventing, as much as possible, that future 
faults may affect the normal operation of the system. 

Now, the nanofabric can be programmed with the 
computed configuration. It is to note that on-line defect 
finding mechanisms should have been included, either 
at design time or by the placer and router. 

Finally, coupling a reliable processor will probably 
be needed to tolerate the occurrence of permanent 
faults via partial reconfiguration. The dependence on 
this processor may be reduced by implementing the 
reconfiguration management process on the nanofabric. 
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