
Combined Defect and Fault Tolerance for Reconfigurable Nanofabrics

David de Andrés, Juan-Carlos Ruiz, Daniel Gil, Pedro Gil
Fault Tolerant Systems Research Group (GSTF), Universidad Politécnica de Valencia (UPV)

DISCA – ETS Informática Aplicada, Campus de Vera s/n, E-46022, Valencia, Spain
Phone: +34 96 3877007 Ext {75752, 85703, 75777, 79707}, Fax: +34 96 3877579

{ddandres, jcruizg, dgil, pgil}@disca.upv.es

Abstract

Reconfigurable architectures represent a promising

option for tolerating the extremely high defect and
failure rates of emerging nanodevices. Different
approaches have been devised throughout the years for
coping with the occurrence of defects and faults in
Field-Programmable Gate Arrays (FPGAs). However,
due to the expected defect and fault rates, many of
these methodologies cannot be directly applied to
reconfigurable nanocircuits or are useless if applied in
isolation. Computer Aided Deisgn (CAD) tools and
new design flows for reconfigurable applications
should be aware of the existing defects in nanofabrics
and automatically include all the mechanisms required
to tolerate the occurrence of faults. This work explores
the existing methodologies that are eligible to tolerate
defects and operational faults, and how they should be
interwoven to increase the confidence the user can put
on the correct operation of nanocircuits.

1. Introduction

The 2007 International Technology Roadmap for
Semiconductors (ITRS) [1] expects to scale CMOS to
11 nm by 2022. Consequently, other physical
mechanisms should be considered to extend scaling
beyond the ITRS expectations.

Figure 1 shows a bottom-up representation of a
system’s hierarchy that summarizes different
approaches which, combined in some yet to be defined
way, may improve the current information processing
paradigm. Emerging technologies such as 1D structures
(nanowires (NW) and carbon nanotubes (CNT)), Single
Electron Transistors (SET), Molecular Devices,
Ferromagnetic Devices, and Spin Transistors, are
expected to achieve densities of 1012 devices/cm2 [2] in
comparison with the 1010 transistors/cm2 CMOS limit.

Figure 1. CMOS vs. emerging nanodevices [1].

However, the manufacturing process followed by

many of these devices, which rely on self-assembly and
self-alignment, largely increases the defect rate of the
chip. Expected defect densities are around 10-1 per
device while they are only 10-7–10-6 per device
(transistor) for present-day scaled CMOS [3]. So,
testing the chip and rejecting it in the case of finding a
small number of defects will no longer be an option. It
seems that once again the old problem of how to
develop reliable chips from unreliable devices [4] is in
the limelight. It will be necessary to develop new
solutions, at an architectural level, that can tackle the
extremely large amount of defects expected.

Furthermore, new devices are likely to be fragile
and very sensitive to their physical environment due to
cosmic radiation, electromagnetic noise, thermal
effects, and background charges. Hence, in order to
exert the potential of projected densities, new
architectural solutions must also be able to tolerate the
occurrence of transient and permanent faults.

At present, one of the most promising architectures
for nanocircuits is based on reconfigurable fabrics such
as Programmable Logic Arrays (PLAs) [5] and Field-
Programmable Gate Arrays (FPGAs) [6]. On the one
hand, the stochastic nature of the manufacturing

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 1/6

process mainly allows building regular structures, such
as 2D crossbars. Reconfigurable fabrics consist of a set
of programmable logic resources that are
interconnected by means of routing elements. These
resources can be programmed or configured to change
the functionality provided by the circuit. All of them
may be implemented using regular structures which
may act as PLA (for logic), interconnection (for
routing), and memory (for configuration) cores. On the
other hand, the reconfigurable capabilities of these
structures make them very interesting to tolerate the
high rate of manufacturing defects or the occurrence of
operational faults in nanodevice-based circuits.

Although different approaches have already been
proposed so far for defect and fault tolerance in
FPGAs, the common design flow for reconfigurable
application shown in Figure 2 should be modified to
deploy those approaches on nanodevice-based circuits.
This design flow first extracts, via a synthesis process,
the interconnected set of logic elements the designer
has specified by means of a model. The resources
required to implement that model are obtained after
mapping those logic elements to the selected
technology. After that, these resources are distributed
(placed) among the free resources of the FPGA and
their interconnection is performed (routed). The result
of this process is a configuration file that can be used to
(re-)program the reconfigurable device.

Figure 2. Reconfigurable computing design flow.

This paper focuses on how this design must evolve

to obtain reliable applications out of unreliable
nanodevice-based circuits. Section 2 introduces some
work related to the applicability of fault tolerance
techniques to nanocircuits. Section 3 and Section 4
review different FPGA-based defect and fault tolerance
techniques that could be applied to these new
architectures. Finally, Section 5 summarises the
proposed defect and fault tolerance driven design flow.

2. Related work

Different redundancy-based techniques to tolerate
high defect/failure rates in chips with densities of 1012
devices were analysed in [7]. The R-fold redundancy
(RMR) and the NAND Multiplexing are generic
techniques that were already proposed by von
Neumann fifty years ago [4], and Reconfiguration is a
technique specifically developed for FPGA systems.

Figure 3 compares the three methodologies in terms
of the level of redundancy required for a given

defect/failure rate to ensure that a chip with 1012
devices will work with a 90% of probability. Classical
techniques do not behave very well since, for instance,
a defect rate between 10-7–10-6 (close to nowadays
values) requires a redundancy level of 1000 for the
RMR technique and only 109 devices can be used for
logic implementation. NAND multiplexing can tolerate
even higher defect/failure rates. Reconfiguration seems
more promising, since it can tolerate defect/failure rates
up to 10-1 which are close to what is expected for
nanodevices. However, this is achieved at the expense
of huge redundancy levels (10000).

Figure 3. Required redundancy level (R) as a function
of the failure rate per device (pf) [7].

This clearly shows that unless defects/failures can

be located and the system reconfigured to avoid them,
the future use of nanodevices could be compromised.

3. Defect tolerance

The deployment of efficient fault tolerance
techniques usually relies on a defect-free circuit.
Hence, defects must be first located for the mapping,
placement and routing processes to implement the
desired defect-free functionality.

3.1. Finding defects

The offline detection and location of defects in
reconfigurable fabrics [8] may be based on the
programmability of the circuit or the design for
testability (DFT). Since it is not feasible to implement a
specific testing circuit out of nanodevices due to their
enormous defect rate, it may be more interesting to take
benefit of the intrinsic programmability of the circuit to
locate its defects. Built-in self test/diagnosis (BIST/D)
seems the most promising approach among the
different proposed techniques [8].

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 2/6

The FPGA-based BIST/D approach [9] divides the
reconfigurable logic blocks into nodes that are
configured as Test Pattern Generators (TPG), Blocks
Under Test (BUT), or Output Response Analysers
(ORA). The TPG, which is usually a linear feedback
shift register (LFSR) or a counter, feeds the inputs of
the BUT. The ORA collects and analyses the outputs of
the BUT by means of a comparator-based or signature
analyser. All the blocks are tested (across and down the
FPGA) to determine whether they are defect-free or not
and the location of existing defects. A similar approach
can be used to locate defects in routing resources.

This methodology should be modified to take into
account the large defect rates of nanodevices. As only
defect-free resources may be used to test adjacent
neighbours, it could be impossible to determine
whether some resources are defect-free or not. This
leads to the definition of a measure known as recovery
[3], which represents the percentage of defect-free
resources that are successfully identified as such.
Furthermore, blocks should be small enough to allow
for a reasonable probability of being defect-free but not
so small that no required logic could be implemented.

This approach was adapted in [10] to a particular
nanodevice-based structure (nanofabric). In that case,
each block (TPG and ORA) tests the three adjacent
blocks (BUT), which in turn test their neighbours, and
so on, in a wave-like manner until the whole circuit has
been tested. The result of each test is stored to build the
defect map of the circuit (see Figure 4). This process
can be repeated from more than one corner of the
circuit to increase the attainable recovery. It is to note
that the initial corner must be tested from outside the
chip with a defect-free (probably CMOS) tester. If all 4
corners are defective, any other block may be used at
the cost of leaving some whole rows/columns untested.

Figure 4. Wave-like BIST/D for nanocircuits [10].

Another approach, which aims at reducing the

complexity of the TPG and the ORA, was presented in
[11]. The BIST/D procedure is performed in parallel,

so three stages are required to change the role played
by each block (see Figure 5). Due to the particular
architecture of the analysed nanofabric, three different
TPG must be used. Thus, the final defect map must be
derived from three partial ones. It is to note that, along
the BIST/D procedure, a defect-free (probably CMOS)
circuit will be required as a either TPG or ORA.

Figure 5. Parallel BIST/D for nanocircuits [11].

We can conclude that BIST/D-like approaches are

suitable to be used in nanocircuits to locate defective
nanofabric resources. Future research should focus on
increasing the attainable recovery, decreasing the
execution time and the dependence on external testers,
and reducing the size of the obtained defect map.

3.2. Mapping around defects

Mapping, placement and routing processes, which
are in charge of implementing a system function,
should be aware of the obtained defect map in order to
avoid defective resources. Traditionally, CAD tools
select those resources that will implement the system
from a pool containing all the available resources of the
FPGA. So, it is just a matter of removing the defective
resources from that pool to ensure that the final
implementation will be defect-free.

In fact, a similar approach has been presented in
[12] to handle multicore architectures in which up to
20-30% of the cores are defective. However, more
aggressive approaches are required to handle the
enormous defect rate of nanotechnologies: 20-30% of
all devices (not cores but CMOS-like transistors) will
be defective. So, most resources are likely to contain
defects and it is not feasible to just throw them away.

The mapping and routing processes should
determine whether a defective resource is still usable
for implementing a specific system function. For
instance, a defective routing element, which
permanently connects two endpoints, may still be used
if the system has to connect these precise endpoints.
The placement process should know all this
information to select those resources that will be finally
used for implementing the system functionality.

This kind of strategy is considered in [13] to use
defective logic arrays for implementing sets of OR
terms. As shown in Figure 6, this is reduced to a
matching problem.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 3/6

Figure 6. Mapping functions to a defective resource [13].

In this way it is possible to increase the actual

recovery obtained at the defect location phase by
effectively using defective resources that can
accommodate the required logic. The main problem of
this approach resides in the time required to compute
whether the defective resource may implement the
given system function. With 1012 devices per chip and
defect densities of 10-1, the obtained defect map will
easily contain about 1011 elements. So, reducing the
size of the defect map and devising new algorithms to
accelerate the mapping process is a must.

4. Fault tolerance

Previously studied techniques enable the defect-free
implementation of a system function on reconfigurable
nanofabrics. However, the obtained defect map is
static, i.e. (permanent) faults occurring during system
operation will lead to new defects that might not be
tolerated. This is also the case of transient faults, which
will probably affect the behaviour of the system.

This section explores some techniques that should
be included in a fault-tolerance aware design flow.

4.1. Redundancy

Although the expected failure rate remains
unknown, it is possible to assume that it will be lower
than the defect rate and higher than the current failure
rate for CMOS devices. As defects have been now
successfully tolerated, classical redundancy-based fault
tolerance techniques may be accommodated by the
large number of resources embedded in the nanofabric.

In that way, every system should be designed having
fault tolerance in mind. However, adding fault
tolerance capabilities is not always easy for designers
who are not dependability experts. The development of

tools supporting the (semi-)automatic deployment of
these mechanisms before synthesising the design
constitutes an issue for further research.

It is also necessary to take into account the
particular characteristics of the reconfigurable circuits
before implementing (placing and routing) the selected
technique. It may happen that a single fault (a junction
is now “on”) may affect the behaviour of more than one
replica (it may cause a short between two inputs
common to all replicas) and, therefore, cause a failure
in the system. This problem must be handled by the
CAD tool, which should distribute the system function
among the available resources to minimise the
probability for a fault to cause a failure.

A reliability-oriented place and route algorithm was
presented in [14] to improve the implementation of
TMR and duplication with comparison with concurrent
error detection, techniques on FPGAs. Although FPGA
manufacturers have been usually more interested in
defect tolerance, Xilinx has lately developed a tool to
transform plain designs for FPGAs into TMR ones
[15]. Similar approaches should be developed to adapt
redundancy-based techniques to the particularities of
each reconfigurable nanofabric.

Although this approach will effectively tolerate the
occurrence of transient faults in the system, in the long
run, it will only tolerate the occurrence of a certain
number of permanent faults. As a result, the nanocircuit
could stop working after a relatively short amount of
time. Due to the cost of locating new defects and
mapping the system function each time the nanocircuit
fails, new approaches must be developed to tolerate the
occurrence of those permanent faults on the fly.

4.2. Reconfiguration

Probably, the reconfigurability is the most
interesting capability of FPGAs. Different approaches
were developed throughout the years to change, on the
fly, the implemented system function, either to provide
new functionalities or tolerate the occurrence of faults.

Changing the functionality provided by the
reconfigurable circuit involves re-implementing the
new function system (map, place and route). This
procedure requires very time consuming computations,
so it is not sensible to run the whole process to perform
a small change in the design, which is usually the case
for fault tolerance. Techniques known as incremental
synthesis [16] are aimed at reducing this time by re-
implementing only the part of the design that has really
changed, keeping as it is the rest of the implementation.
This should be taken into account when deploying new
fault tolerance mechanism at run-time.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 4/6

A related problem is that the FPGA has to be
completely reprogrammed to change its functionality.
That process could introduce a huge timing overhead.
Manufacturers have tackled that issue by developing
new families that allow for their partial configuration
[17], i.e. only that part of the FPGA implementing the
functionality that changes is reprogrammed.

In this context, different FPGA-based fault tolerance
methodologies were developed [18] to minimise the
reconfiguration required to avoid the faulty resource
upon detection. Tiling [19] seems a very good option
for being applied to reconfigurable nanofabrics, since it
does not reserve redundant resources for fault
tolerance. Instead, different configurations are
computed for each resource to map a given function to
different elements within the resource. If a fault occurs,
it is just a matter of changing the current configuration
of the resource by an alternative one that tolerates such
fault. Figure 7 shows a possible application of the
Tiling approach to the logic array of Figure 6.

Figure 7. Example of fault tolerance with Tiling.

The occurrence of permanent faults may prevent the

system function to be mapped to the faulty resource (a
short in junctions 1 and 8 in Figure 7, for instance). In
that case, any other reconfiguration technique [18],
usually involving placing and routing again the desired
function, should be used to reallocate the system
function to a suitable resource.

The main drawback of reconfiguration approaches is
that an external processor is usually required in order to
compute the new partial fault-free configuration. This
computation certainly induces some timing overhead in
the system execution. In the case of nanofabrics, this
time can be quite significant, since a much slower
(reliable) CMOS processor should be in charge of
generating the new configuration. The Tiling
methodology, which minimises the intervention of the
external processor is, then, very interesting.

Furthermore, reconfiguration techniques assume that
it is possible to detect the occurrence of new faults and
precisely locate them. Hence, it will be necessary to
perform new defect finding processes upon fault
detection and, after locating the fault, apply some
reconfiguration technique to tolerate it. Again, an
external reliable processor could be an (slow) option to
perform this process. On-line approaches, like the one
presented in [20], may employ unused resources of the
reconfigurable fabric to continuously scan the rest of
the circuit for new defects. This could eliminate the
dependency on an external processor and decrease the
timing overhead associated to that scanning process. It
must be noted that the nanofabric should be
continuously reconfigured to test all the available
resource, those dedicated to implement the system
function and those implementing the scanning process.

5. Conclusion

As it has been shown, adapting FPGA-based defect
and fault tolerance techniques to reconfigurable
nanofabrics will require a profound modification of
CAD tools and their supported design flow. Figure 8
depicts our proposed design flow and identifies open
issues for further research that are next commented.

Figure 8. Proposed defect and fault-tolerance aware
design flow.

The most notable change is that designs can not be

implemented just once anymore. Since the defect map
is unique for each single nanofabric, the design must be
implemented for every considered circuit. So, reducing
the implementation time is of prime importance.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 5/6

Due to the expected high rates of faults occurrence,
any design should include basic techniques for
(transient) fault tolerance. Therefore, the possibility of
(semi-)automatically inserting these mechanisms into
the nanofabric, either at design- or run-time, is a must
to assist designers who are not dependability experts.

The extremely high defects rate involves generating
a defect map for the selected nanofabric. This defect
map will be used after synthesising the design to map
the extracted logic to the underlying reconfigurable
fabric. In this way, it is possible to use those defective
devices that do not affect the behaviour of the system.

The next step consists in performing a fault-
tolerance driven place and route process. It will
distribute the logic among the available resource of the
nanofabric taking into account its architecture. This
will help preventing, as much as possible, that future
faults may affect the normal operation of the system.

Now, the nanofabric can be programmed with the
computed configuration. It is to note that on-line defect
finding mechanisms should have been included, either
at design time or by the placer and router.

Finally, coupling a reliable processor will probably
be needed to tolerate the occurrence of permanent
faults via partial reconfiguration. The dependence on
this processor may be reduced by implementing the
reconfiguration management process on the nanofabric.

6. Acknowledgements

This work was sponsored by the Spanish projects
MCYT TEC 2005-05119/MIC, MEC TIN2006-08234.

7. References

[1] ITRS 2007 Edition, International Technology Roadmap
for Semiconductors, 2007 [Online]. Available:
http://www.itrs.net/reports.html

[2] M. Butts, A. DeHon, and S. C. Goldstein, “Molecular
Electronics: Devices, Systems and Tools for Gigagate,
Gigabit Chips”, IEEE/ACM Int. Conference on Computer-
Aided Design, San Jose, CA, USA, pp. 433–440, 2002.

[3] M. Mishra and S. C. Goldstein, “Defect Tolerance at the
End of the Roadmap”, International Test Conference,
Charlotte, NC, USA, pp. 1201–1210, 2003.

[4] J. von Neumann, “Probabilistic Logics and the Synthesis
of Reliable Organisms from Unreliable Components”,
Automata Studies, C. E. Shannon and J. McKarthy, Eds.,
Princeton University Press, 1956, pp. 43–98.

[5] A. DeHon “Nanowire-Based Programmable
Architectures” ACM Journal on Emerging Technologies in
Computing Systems, Vol. 1, No. 2, 2005, pp. 109–162.

[6] D. B. Strukov and K. K. Likharev, “CMOL FPGA: A
Reconfigurable Architecture for Hybrid Digital Circuits with
Two-terminal Nanodevices”, Nanotechnology, Institute of
Physics Publishing, Vol. 16, 2005, pp. 888–900.

[7] K. Nikolić, A. Sadek, and M. Forshaw, “Fault-tolerant
techniques for nanocomputers”, Nanotechnology, Institute of
Physics Publishing, Vol. 13, 2002, pp. 357–362.

[8] A. Doumar and H. Ito, “Detecting, Diagnosing, and
Tolerating Faults in SRAM-Based Field Programmable Gate
Arrays: A Survey”, IEEE Trans. on Very Large Scale
Integration Systems, Vol. 11, No.3, 2003, pp. 386–405.

[9] S.–J. Wang and T.–M. Tsa, “Test and diagnosis of faulty
logic blocks in FPGAs”, IEEE/ACM Int. Conf. on Computer-
Aided Design, San Jose, USA, pp. 722–727, 1999.

[10] J. G. Brown and R. D. Blanton, “CAEN-BIST: Testing
the NanoFabric”, International Test Conference, Charlotte,
NC, USA, pp. 462–471, 2004.

[11] Z. Wang and K. Chakrabarty, “Built-In Self-Test and
Defect Tolerance of Molecular Electronics-Based
Nanofabrics”, Journal of Electronic Testing, Vol. 23, No. 2–
3, 2007, pp. 145–161.

[12] P. Zając, et al., “Resilience through Self-Configuration
in the Future Massively Defective Nanochips”, Supplemental
Volume of the 37th Annual IEEE/IFIP Int. Conf. on
Dependable Systems and Networks - Workshop on
Dependable and Secure Nanocomputing,, Edinburgh, UK,
2007 [Online] Available: http://www.laas.fr/WDSN07/

 [13] D. DeHon and H. Naeimi, “Seven Strategies for
Tolerating Highly Defective Fabrication”, IEEE Design and
Test of Computers, Vol. 22, No. 4, 2005, pp. 306–315.

[14] L. Sterpone, et al., “Evaluating Different Solutions to
Design Fault Tolerant Systems with SRAM-based FPGAs”,
Journal of Electronic Testing, Vol. 23, 2007, pp. 47–54.

[15] TMRTool, Xilinx Inc., San Jose, USA, 2006 [Online]
Available: http://www.xilinx.com/ise/optional_prod/tmrtool.htm

[16] Mentor Graphics Corporation, “Incremental FPGA
Synthesis”, San Jose, CA, USA, 2007.

[17] Xilinx Inc., “Virtex 2.5V FPGA Complete Data Sheet”,
San Jose, CA, USA, 2002 [Online] Available:
http://www.xilinx.com/support/documentation/data_sheets/ds003.pdf

[18] J. A. Cheatham and J. M. Emmert, “A Survey of Fault
Tolerant Methodologies for FPGAs”, ACM Trans. on Design
Automation of Electronic Systems, Vol. 11, No. 2, 2006, pp.
501–533.

[19] J. Lach, W. H. Mangione-Smith, and M. Potkonjak,
“Low Overhead Fault-Tolerant FPGA Systems”, IEEE
Trans. on VLSI Systems, Vol. 6, No. 2, 1998, pp. 212–221.

[20] N. R. Shnidman, et al., “On-Line Fault Detection for
Bus-Based Field Programmable Gate Arrays”, IEEE Trans.
on Very Large Scale Syst., Vol. 6, No. 4, 1998, pp. 656–666.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 6/6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

