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Abstract

Bottom-up self-assembly process used in the fabri-
cation of nanoscale devices yields significantly more
defects compared to conventional top-down lithography
used in CMOS fabrication. Therefore, applying defect
tolerant design schemes is inevitable to be able to map
the design to these programmable fabrics around de-
fects. However, defect-aware design mapping could be
very time consuming and complicated both at design
time and post-fabrication configuration time. In this
paper, we present an alternative approach for defect
tolerant mapping in which the mapping phase is built
into the programmable fabric and on-chip resources are
used for defect-free mapping. This built-in self map
(BISM) scheme significantly reduces the complexity of
defect tolerance both at design time and post-fabrication
configuration time.

1 Introduction

A considerable amount of research is currently
focused on developing nanoscale devices and alter-
native nanotechnologies to supersede conventional
lithography-based CMOS technology. Current inte-
grated circuits are designed using a top-down ap-
proach where lithography imposes a pattern. Un-
necessary bulk material is then etched away to gen-
erate the desired structure. An alternative bottom-
up approach, which avoids the sophisticated and ex-
pensive lithographic process, utilizes self-assembly, in
which nanoscale devices can be self-assembled on a
molecule by molecule basis. Researchers have shown
successful realization of nano devices, such as car-
bon nanotubes (CNTs) and silicon nanowires (NWs),
using self-assembly techniques [1, 2, 3]. Chemically
self-assembled structures, as the building blocks for
molecular-scale computing, are by their nature very
regular and therefore well suited to the implementa-
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tion of regular arrays similar to conventional Field Pro-
grammable Gate Arrays (FPGAs). Reprogrammable
nano-architectures are currently being investigated [4,
5].

Self-assembly processes promise to considerably
lower manufacturing costs, but at the expense of re-
duced control of the exact placement of these devices.
Without fine-grained control, these devices will cer-
tainly exhibit higher defect rates [1, 2, 5]. Moreover,
nanofabrication process yields nanowires which are a
few atoms long in the diameter. For instance, the con-
tact area between nanowires contains only a few tens
of atoms. With such small cross-section and contact
areas, fragility of these devices is orders of magnitude
more than devices currently being fabricated using con-
ventional lithography techniques.

The programmability of crossbar nano-architectures
can be used to implement defect and fault tolerant
schemes for the designs mapped into these architec-
tures. After identifying defective resources using thor-
ough test and precise fault localization [6, 7, 8, 9, 10],
they can be bypassed by post-fabrication configura-
tion. However, conventional application-dependent de-
fect tolerant schemes impose complexity for the design
and test flow as well as the post-fabrication configu-
ration time. The test and diagnosis flow is required
to specify the exact location of defective resources
within the nano-architecture (application-independent
test and diagnosis). This means that very high resolu-
tion and time consuming diagnosis is performed, and
the information, in a very large defect map, is provided
to the physical design flow. This information is used for
post-fabrication configuration to bypass defects. The
entire process has to be repeated in a per-chip basis
which makes it impractical for high-volume production.

In this paper, we present an alternative approach for
defect tolerant mapping in which bypassing defective
resources for application mapping (post-fabrication
configuration) is performed by the nano-architecture
(self-map) using on-chip resources (built-in). This
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built-in self map (BISM) strategy removes all complex-
ities due to defect tolerance from design and test flow
and makes post-fabrication configuration much faster.
In BISM, only application-dependent test and diagno-
sis are used which are significantly less complex and
time-consuming compared to application-independent
test and diagnosis in the traditional flow. We present
variations of BISM tailored for various defect density
levels and configuration time. We also show how BISM
can effectively be exploited in the implementation of
fault tolerant schemes in order to tolerate defects dur-
ing lifetime operation.

The rest of this paper is organized as follows. In
Section 2, an overview of crossbar nano-architectures
is presented. Section 3 describes the proposed BISM
scheme. Finally, Section 4 concludes the paper.

2 Crossbar Array Nano-Architectures

Bottom-up approaches used in the fabrication of
nano-scale devices rely on self-assembly for defining
feature size and may offer opportunities to drastically
reduce the number of steps required to produce a cir-
cuit. However, the biggest impact in going from top-
down designs to bottom-up is the inability to arbitrar-
ily determine placement of devices or wires. With-
out fine control of the design, devices made from self-
assembly techniques tend to be restricted to simple
structures, such as two-terminal devices. Since these
devices are usually non-restoring, one design chal-
lenge would be providing signal restoration between
nanoscale logic stages. Two dimensional (2D) crossbars
are the building blocks of reconfigurable crossbar ar-
ray architectures. Two layers of orthogonal nanowires
or carbon nanotubes form the crossbars [11]. These
nanowires or carbon nanotubes are aligned in paral-
lel rows using bottom-up self assembly process. At
each intersection, also called crosspoint, there is a pro-
grammable switch which is non-volatile. A one-time
programmable switch consists of a monolayer of redox-
active rotaxanes sandwiched between metal electrodes
is demonstrated in [2]. In the closed state, the switch
acts as a diode. It can also be irreversibly opened by
applying a oxidizing voltage across the device. In these
crossbars, configuration of crosspoint is performed by
applying a higher voltage (programming voltage) to the
intersecting nanowires. Unlike programmable cross-
points in conventional VLSI which are an order of
magnitude larger than wire crossing area, crosspoint
switches in this nanotechnology take the same area as
of a wire crossing.

A chemically assembled electronic nanotechnology
FPGA-like architecture called NanoFabric has been
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proposed in [5]. Nano logic arrays, also called
Nanoblocks, implement a diode-resistor logic (DRL)
since crosspoints act as programmable diodes. Another
array based nano-architecture using Programmable
Logic Arrays (PLAs) has been presented in [4]. The
main building block, called the nano programmable
logic array (nanoPLA), is built from a crossed set
of N-type and P-type nanowires. The nanoPLA is
programmed using lithographic-scale wires along with
stochastically-coded nanowire addressing [12]. The
molecular CMOS (CMOL) circuits proposed in [13]
are designed using the same crossbar array structure
as the nanoPLA design consisting of two levels of
nanowires. The main difference with CMOL is how
the CMOS/nanodevices are interfaced. Pins are dis-
tributed over the circuit in a square array, on top of
the CMOS stack, to connect to either lower or up-
per nanowire levels. By angling the nanoarray, the
nanowires do not need to be precisely aligned with each
other and the underlying CMOS layer in order to be
able to uniquely access a nanodevice.

3 Built-in Self-mapping (BISM)

Thorough testing and precise high-resolution loca-
tion of failing resources in a defective part are keys
to successful implementations of defect and fault tol-
erance. Built-in-self-testing (BIST) and Built-in-self-
diagnostics (BISD) are key components for effective
defect tolerance and self-repair with minimized depen-
dence on the external test equipment. Built-in test
techniques have been used for FPGAs [14, 15, 16, 17]
and crossbar nano-architectures [7, 9, 10].

Since it is expected that all manufactured nano-
chips contain a considerable percentage of defects even
in a mature fabrication process, defect tolerance is in-
evitable. The goal of defect tolerance is to bypass de-
fective resources using test and diagnosis information.
Since defects are device specific, this part of the design
flow, mapping the application and bypassing defective
resources, has to be device specific as well. However,
the information required for such mapping, which is
obtained only after test and diagnosis, is not available
at the design time. Therefore, some parts of the ap-
plication mapping phase have to be postponed from
design time to the test time.

As parts of the design flow are shifted to the test
time, we proposed a built-in self-mapping (BISM) ap-
proach to minimize per-chip customized mapping ef-
forts. BISM allows the crossbar array to be configured
by the on-chip interface circuitry and bypass defec-
tive resources. It also reduces physical design efforts
in which detailed placement and routing will be per-
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formed on-the-fly. In other words, only global place-
ment and routing has to be completed at the design
time and detailed configuration of individual crossbars
(for logic mapping or signal routing) will be deter-
mined at the configuration time by BISM. The fol-
lowing BISM schemes are proposed depending on the
defect density level.

3.1 Blind BISM

Since the two-dimensional crossbars used in cross-
bar array nano-architectures are complete structures,
it is possible to find many different configurations (le-
gal configurations) for a crossbar in order to implement
a particular functionality (i.e. a specific logic mapping
or signal routing, depending on the functionality of the
crossbar). In a defect-free crossbar, any of these pos-
sible legal configurations can be used. However, in a
defect-free crossbar some of these legal configurations
use defective resources, and hence, are not valid. A
successful configuration is a legal configuration which
implements the desired functionality (logic mapping
or signal routing) and does not use any defective re-
sources. The goal of BISM is to automatically generate
a successful configuration using on-chip resources and
with the help of BIST and/or BISD schemes.

Blind BISM is the simplest form of BISM. In this
scheme, a random configuration for the crossbar is gen-
erated on-the-fly and then application-dependent BIST
is used to check whether this configuration is defect-
free. The above process is repeated if BIST detects any
fault in the generated configuration. The flowchart for
Blind BISM is shown in Fig. 1. Note that application-
dependent test is the simplest and fastest compared to
diagnosis or application-independent test. Techniques
for built-in application-dependent testing for reconfig-
urable systems have been presented in [14].

The reconfiguration and test method presented
in [10] can be categorized as a Blind BISM scheme.
Blind BISM is suitable for low defect densities in
which it is expected that a randomly generated con-
figuration is defect-free with a high probability such
that few configuration retries are performed. Since
no application-independent test is performed and no
diagnosis is involved (neither application-independent
nor application-dependent), blind BISM is very fast
and effective for low defect-densities.  The self-
reconfiguration circuitry is also very simple and small.

3.2 Greedy BISM

When defect density is high, blind BISM approach
becomes ineffective due to too many configuration re-
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configuration
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Figure 1. Blind BISM scheme

tries. In this case, Greedy BISM is performed as fol-
lows. It starts with a random configuration followed
by BIST. If the configuration is failed, application-
dependent BISD is performed to identify the defective
resources utilized in the most recent configuration. The
self-reconfiguration uses the diagnosis information to
only bypass (reconfigure) the defective parts of that
configuration. In other words, in each iteration, only a
partial configuration, just for defective portion of the
previous configuration, is generated. This process is re-
peated until the last configuration is defect-free. The
flowchart for the Greedy BISM scheme is shown in
Fig. 2. In this flowchart, the first generated configu-
ration is also checked with BISD, as a variation of the
approach described above.

The configuration generation algorithm (circuitry)
for greedy BISM is a variation of that for blind BISM.
In blind BISM, a complete configuration for the cross-
bar is generated at each retry phase. The input to the
configuration generation process is the function to be
implemented by the crossbar and the output is the con-
figuration of the crossbar (on and off switches). How-
ever in greedy BISM, only a partial configuration corre-
sponding to defective portion of the last configuration
needs to be generated. The partial configuration algo-
rithm for greedy BISM is similar to that for blind BISM
except that it takes the partial function and the subset
of the crossbar to be used for mapping the partial func-
tion as the inputs. In other words, the configuration
generation circuitry for greedy BISM can also be used
for blind BISM in which the partial function is the to-
tal function and the subset of crossbar for mapping is
the entire crossbar.

Note that each retry phase in greedy BISM takes
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Figure 2. Greedy BISM scheme

longer than blind BISM since application-dependent
BISD is used. The number of test configurations re-
quired for BISD is more than that for BIST. How-
ever, the number of retries is much smaller compared
to blind BISM for higher defect densities, resulting in
shorter mapping time in overall. Built-in application-
dependent diagnosis techniques for reconfigurable sys-
tems have been presented in [15].

3.3 Hybrid BISM

As pointed out in the previous subsections, Blind
BISM is suitable when defect density is low and it is ex-
pected that a successful configuration can be generated
with few random retries. On the other hand, Greedy
BISM uses diagnosis and partial configuration to per-
form a successive configuration generation. Therefore,
when defect density is high and random retries (blind
scheme) might not be successful, partial configuration
and diagnosis will be effective.

The Hybrid BISM procedure is the combination of
the Blind and Greedy BISM procedures. It is expected
to work for all defect densities and also various de-
fect density distributions across different crossbars in
a nano-chip, i.e. ideal for both global and local defect
density variations. In the hybrid BISM scheme, the
BISM procedure initially starts with blind BISM. If it
is not successful after a pre-defined number of retries,
it automatically switches to greedy BISM. Therefore,
it performs a thresholding on random reties and then
switches to partial configuration and diagnosis. The
hybrid approach can quickly configure the crossbars
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with smaller defect densities and also performs well on
crossbars with higher defect densities. Also, when de-
fect densities of various crossbars in the crossbar array
nano-architecture are different, the hybrid BISM auto-
matically performs blind BISM for crossbars with lower
defect densities and greedy BISM for those with higher
defect densities.

As described in Sec. 3.2, the configuration genera-
tion algorithms (circuitry) for blind and greedy BISMs
can be the same in which blind configuration genera-
tion is a special case of greedy configuration generation.
In this case, the same configuration generation scheme
can be used for hybrid BISM as well.

3.4 Comparison of BISM Schemes

In order to evaluate the effectiveness of various

BISM schemes described above, we consider the num-
ber of retries and reconfigurations for defect-free
matching for different sizes of crossbars and defect
density levels. Defect density is defined as the ra-
tio (percentage) of defect-free resources (programmable
switches) over the total number of resources in a cross-
bar. Defect-free matching is a typical configuration
for an n x n crossbar which is used for both logic map-
ping [18] and signal routing [19]. In a defect-free perfect
matching, all inputs of a crossbar are matched (one-to-
one) to the outputs using defect-free switches.
Blind BISM. If defect density is d, then the proba-
bility that a given matching (containing n switches) in
an n X n crossbar is defect-free can be calculated as
Pratehing = (1 — d)™. Here we assume that defects are
randomly distributed in the crossbar. If the configu-
rations for the matching are randomly generated, the
probability that the first successful (defect-free) con-
figuration is generated in the k** retry is given by:
(1 = Pratehing)* Y Prmatehing- The expected number of
retries is then calculated as follows:

00 1
§ k—1

k(]- - Pmatching) Pmatching =
1 Pmatching

(1)
Therefore, the expected number of retries for the
Blind BISM scheme, Np(n), is calculated as follows.

Ny(n) = [(1 —d)™"] (2)

Greedy BISM. In Greedy BISM approach, each retry
reconfigures only the defective portion of the previous
configuration. In order to obtain the expected number
of retries for the Greedy BISM scheme,N,, we use a
recursive formulation. The goal is to calculate Ny(n)
which is the expected number of retries to match n
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inputs to n outputs in an n X n crossbar with defect
density d. Since precise diagnosis is used in each iter-
ation of the BISM scheme, only defective resources of
the partial configuration of iteration i are considered
and configured in iteration ¢ + 1. Hence, if the size of
matching for the partial configuration in the i*" itera-
tion is m (m inputs need to be matches to m outputs,
m < n), then the expected size of matching in 7 + 1"
iteration is [m x d]. This is the number of defects in
the previously generated matching which is diagnosed
by BISD. Only this part of matching needs to be re-
generated and remapped in the next iteration. When
m = 1, the expected number of retries to map one in-
put to one output is [1/(1 — d)], since the probability
of finding a defect-free switch is 1 — d. Therefore, we
can use the following recursive formulation for Ny (m):

1+ Ng(md), m > 1
k=l

Applying the recursive formulation & times, we have
Ny(m) = k + N,(mdF). Obtaining k for md* =1,

(3)

,m=1

Ng(m) = {

Ny(m) = logy =+ Ny (1) ()

Using this equation and the basis of the recursive
formula, N, (N) can be found in non-recursive form:

Ny(n) = {1&1} * hrllnﬂ (5)

Although the above equation describes the expected
number of retries in the greedy BISM scheme, we also
need to consider the number of test configurations re-
quired for diagnosis during each iteration. In blind
BISM, only an application-dependent test is performed
at each step. In greedy BISM, precise diagnosis is re-
quired which itself needs many configurations. The
number of configurations for diagnosis is proportional
to the diagnosis resolution, i.e. the number of faults
that can precisely be located. There are n? switches
in an nn crossbar. When defect density is d, the ex-
pected number of defective switches is n?d. In an n
by n matching, n switches are used. In the worst case
scenario, all these n2d defects in the crossbar can be
in the matching resources, however, this number can-
not exceed n. So, the maximum expected number of
defects in a matching is Ngefeet = min([n3d],n). The
diagnosis flow should be able to precisely locate Ngefect
multiple defects. The number of test configurations to
perform such diagnosis is O(Ngefect). Therefore, the
total number of steps in the greedy BISM scheme, con-
sidering reconfiguration retries and diagnosis configu-
ration is:

IEEE/IFIP DSN-2008

2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008

Nowa @) = ([125] + [Fo|) min( 2l 6)

Figure 3 shows the number reconfiguration retries
for defect-free matching in 16 x 16, 32 x 32, and 64 x 64
crossbars for various defect densities using blind and
greedy BISM. For Greedy BISM, the number of retry
steps and total steps (retries and diagnosis) are shown.
In blind BISM, the number of reconfiguration retries
increases almost exponentially with the defect density
(please note that the Y-axis is in logarithmic scale).
The total number of steps in Greedy BISM has a
negligible relation with defect density. As a result,
for larger defect densities, Greedy BISM outperforms
Blind BISM significantly.

Hybrid BISM, as a combination of Blind and Greedy
BISMs, starts with Blind BISM and then switches to
the Greedy scheme using a thresholding mechanism.
By comparing Equations 2 and 6, or alternatively the
graphs in Fig. 3, the optimum threshold for each size
of crossbar can be obtained. The threshold must be
set to the number of retries in which the curves for
Blind BISM and Greedy BISM cross (Y-axis value).
Below this threshold, the Blind BISM is more efficient
and beyond it the Greedy BISM outperforms. Table 1
presents the optimum threshold for the number retries
in the Hybrid BISM before switching to greedy ap-
proach. It also shows the corresponding defect density
values for the crossing points. It can be seen that the
switch from Blind to Greedy BISM for larger crossbars
occurs at lower defect densities.

| Size of crossbar | Retry threshold | Defect Density |

12 x 12 48 27.5%
16 x 16 64 22.8%
32 x 32 96 13.3%
64 x 64 192 7.9%

Table 1. Retry threshold in Hybrid BISM

Finally, it needs to be mentioned that the BISM
controller as well as the BIST/BISD controllers can be
implemented in the reliable CMOS interface of hybrid
nano-CMOS architectures. This provides better relia-
bility and predictability for the proposed flow and the
entire nano-architecture.

4 Conclusions

Defect and fault tolerance are inevitable for sys-
tems built using self-assembly processes. In this paper,
we have presented a built-in self map (BISM) strat-
egy in which the physical mapping of the designs into
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programmable crossbar nano-architecture is performed
on-the-fly using on-chip resources. This approach will
reduce many complexities related to defect-aware de-
sign and test resulting in simpler and faster design and
test flows, as well as reduced post-fabrication configu-
ration time. BISM can effectively be exploited for the
implementation of defect tolerance, for manufacturing
defects, and fault tolerance, for lifetime operation de-
fects. Various BISM schemes have been presented in
the paper which can be tailored based on the defect
density level and mapping (configuration) time.

Future research directions include the implementa-
tion of BISM controll circuitry and simulation-based

experimentations.
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