
Blocking and Non-blocking Checkpointing and Rollback Recovery for  
Networks-on-Chip 

 
  

Claudia Rusu1, Cristian Grecu2, Lorena Anghel1 
 

1 TIMA Laboratory (CNRS-UJF-INPG), 2 University of British Columbia 
claudia.rusu@imag.fr, grecuc@ece.ubc.ca, lorena.anghel@imag.fr 

 
 

Abstract 
 

In this paper we propose a dynamically 
reconfigurable failure recovery scheme developed for 
Network-on-Chip (NoC) based systems. The recovery 
scheme is based on a checkpointing and rollback 
protocol and permits enhancing the system fault 
tolerance capabilities by exploiting information on 
traffic load and failure rate. The increased 
performance of the fault tolerance mechanism is 
achieved by simply switching between blocking and 
non-blocking checkpointing approaches. We analyze 
the effectiveness of the solution, considering different 
traffic loads and expected failure rates. 
 
Keywords: network-on-chip, fault tolerance, rollback 
recovery, checkpoint, performance, failure rate. 
 

1.  Introduction 
 

 The use of packet-switched on-chip interconnection 
networks, commonly referred to as networks-on-chip 
[1] is a promising alternative that addresses the issues 
of increasing inter-core communication requirements. 
Thus, NoC is emerging as the new on-chip 
communication structure, where applications can be 
seen as sets of different communicating tasks running 
on several processing elements (PEs). Achieving fault 
tolerance of large, multi-core designs is recognized as a 
challenging design constraint both in industry and 
academia. 

The major cause affecting the reliability of the VLSI 
global interconnects is the shrinking of the feature size, 
which exposes them to different faults of permanent, 
transient or intermittent nature. Among the fault 
sources we can enumerate: process variation, crosstalk, 
electromagnetic interference and cosmic radiation hits. 
These phenomena can alter the timing and functionality 
of the NoC fabrics and thus degrade their 
characteristics, leading, eventually, to failures of the 

NoC-based systems. A failure, even if it only affects an 
element of the system, can lead to restarting the entire 
application from its initial state, which can be 
unacceptable, especially for critical applications.  

Rollback recovery has been largely employed as a 
fault tolerant mechanism at system and application 
level, in distributed and parallel systems and can also 
serve a similar purpose in NoC-based systems. Figure 1 
illustrates the rollback recovery principle vs. restart. 

 
Figure 1. Rollback recovery vs. restart 

The mechanism implies periodically saving 
(checkpointing), during the failure-free execution, of 
consistent states, on stable storage. The latter is a 
memory element whose content persists through the 
tolerated failures. A state is consistent if it could be 
reached following a correct and error-free execution of 
the application from the start point. In case of failure, a 
rollback is performed, i.e. the application resumes 
execution from the most recent consistent state. 

Several approaches of rollback recovery have been 
proposed [2]. In distributed systems, pure 
uncoordinated checkpointing suffers from domino 
effect [3], caused by low probability to form a 
consistent state by individual checkpoints (it is assumed 
that each individual system forming a distributed 
system is able to take checkpoint). To avoid the 
domino effect, this method is usually complemented by 
message logging, at the price of higher overhead. Due 
to its simplicity and lower overhead when compared to 
other methods, coordinated checkpointing is preferable 
in practice [2]. Since these features are not only 
desirable, but rather required for systems-on-chip 
(SoC), we will use in this work the coordinated 
checkpointing.  
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During the failure-free execution, when taking a 
global checkpoint using the coordinated protocol, all 
tasks must synchronize with each other, in order to set a 
consistent global state. The coordinated checkpointing 
principle is depicted in Figure 2.  

 

Figure 2. Coordinated checkpointing 
principle 

The global synchronization coordinator is a 
dedicated task, which we call the recovery management 
unit (RMU). 

During the global synchronization phases, 
synchronization messages are exchanged among tasks. 
Both blocking and non-blocking checkpointing 
methods were proposed. In the blocking approach, 
tasks block their normal execution during 
checkpointing and exchange only synchronization 
messages, while in the non-blocking one, tasks overlap 
their normal execution with the synchronization phase. 
Generally, the non-blocking approach is preferred due 
to its lower latency. Thus, there are many works 
dedicated to proposing new or improved non-blocking 
protocols for distributed and parallel systems. 

For typical SoC applications, the nature of the 
communication pattern is mostly heterogeneous, with 
certain task sets exchanging data more frequently than 
others. Different applications with their own disjoint 
task sets can also run simultaneously on the NoC-based 
system [4]. Even if the tasks in different disjoint sets do 
not exchange data with each other, they may compete 
for NoC resources (routers, channels). Mapping the 
application tasks to PEs is an important step in the NoC 
design flow, and is generally performed with the 
objective of minimizing communication latency and 
power dissipation [5]. Also, it is desirable to adapt the 
checkpoint and rollback recovery method to the 
specifics of the communication pattern, and optimize 
the recovery mechanisms such that the latency and 
overhead they incur are reduced as much as possible.  

One of the main limitations of the coordinated 
checkpointing protocol is the duration of the global 
synchronization. With the increase of the network size 
and/or traffic load, the checkpointing duration 
increases. As the protocol allows no overlapping of 

checkpointing phases, the possible interval of time 
between two consecutive checkpoints enlarges. In 
consequence, after a rollback in case of failure, re-
bringing the application to the failure-free state incurs 
greater latency.  

This situation becomes even more drastic when the 
synchronization latency cannot be reduced below the 
expected interval between two consecutive failures. In 
such cases, there is no sufficient time to take a new 
global checkpoint, so the application always rolls back 
to the last one. When the probability of occurrence of 
these conditions is high, the application stops 
advancing its execution. 

In this work we show that this kind of situations are 
better solved using a blocking checkpointing approach. 
The main contribution of this work is the development 
of a checkpointing protocol that can run in either 
blocking or non-blocking mode, for NoC based 
systems. It can dynamically change its mode exploiting 
information on traffic load and failure rate in order to 
obtain an optimum performance. Moreover, as the 
same protocol is used, it offers the possibility to block 
only the execution of a subset of participating tasks, 
while the others checkpoint without blocking (useful 
for critical tasks or tasks that do not significantly 
overload the NoC resources). 

The rest of the paper is organized as follows. In 
Section 2 we present related works regarding NoC fault 
tolerance and blocking/non-blocking checkpointing 
approaches. Section 3 describes the system and 
application model. Section 4 presents the checkpoint-
rollback recovery scheme. Simulation results are 
presented in Section 5. Section 6 contains the 
concluding remarks and future work. 
 

2.  Related Work 
 

Using the common layered representation of 
distributed networked systems, we can classify the 
currently proposed fault tolerant schemes for NoC 
based systems depending on the layer(s) onto which 
they are placed in the communication stack. At the 
lowest level we find fault tolerant approaches based on 
hardware redundancy (NMR – N modular redundancy) 
[6], where NoC links are duplicated.  

At higher levels we find solutions based on error 
detection and correction, eventually combined with 
retransmission [7] [8]. Some of the coding-based 
solutions consider crosstalk as an important source of 
data corruption, and devise crosstalk-avoidance 
methods, sometimes combined with single or multiple 
error correction mechanisms [9]. These methods can be 
applied either inter-router or to end-to-end channels.  
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A few adaptive routing techniques were proposed 
for avoiding permanent faults in NoC components 
(links or routers).  Adaptive routing has the 
disadvantage of not being able to handle transient 
errors, therefore must be combined with error 
detection/correction schemes when transient errors are 
a concern. A solution that can cope with transient 
errors without a need for error control schemes is 
stochastic communication [10], where data is 
forwarded from the source to destination cores on 
multiple paths, selected probabilistically, such that the 
probability of a message being received correctly can 
be significantly improved. Stochastic methods are, 
however, resource intensive and tend to saturate the 
network quickly due to multiple copies of the same 
message being transported through the network 
simultaneously. 

Failure recovery through checkpointing and rollback 
complements the above mentioned fault tolerant 
methods by adding an extra level of safety when a 
failure occurs and it is not solved by any of the 
methods at lower levels. 

Blocking [15] or non-blocking [17] checkpointing 
protocols were previously proposed for computer 
networks and super-computers. Different approaches 
were proposed to reduce the overhead of coordinated 
checkpointing algorithms, like minimizing the number 
of synchronization messages and the number of 
checkpoints, making the checkpoint non-blocking or 
combinations of these [11]. A quantitative comparison 
between two different blocking and non-blocking 
protocols for large scale MPI (message passing 
interface) systems was addressed in [16].  

Another direction for enhancing the overall 
checkpointing performance is the communication-
induced checkpointing (CIC). CIC protocols were 
proposed as an improved approach combining the 
coordinated and the uncoordinated checkpointing 
protocols. They attempt to reduce the number of tasks 
participating in the global checkpointing by a 
dynamical analysis of the traffic pattern. However, a 
more recent work [12] shows that CIC protocols do not 
scale well for larger number of tasks. Hierarchical 
checkpointing protocols have also been proposed for 
large clusters and cluster federations using coordinated 
checkpointing or combining coordinated checkpointing 
and CIC [13].     
 

3.  System and Application Model 
 

In this work, the NoC-based multi-core system-on-
chip is modeled as a set of PEs interconnected by a 
message-passing communication fabric. At any time, 

one or several computing tasks can be mapped onto 
each processing element. During execution, the tasks 
exchange data in form of packets using a wormhole 
switching technique, with messages organized in sets of 
basic flow control units (flits). The first flit of each 
message (the header flit) establishes the path between 
the corresponding source and destination PEs, and the 
subsequent data flits follow the header in a pipelined 
fashion. The last flit of the message, the tail flit, ends 
the transmission and frees the resources reserved by the 
header. As for routing, the XY algorithm is used. 

For simulations we used a mesh direct-connected 
NoC, as the one depicted in Figure 3, with one task 
mapped onto each PE.  

 

Figure 3. 4x4 mesh direct NoC 

The stable storage is local to each PE, so the 
checkpoints do not overload the network when stored 
to the stable storage. 
 
4.  Recovery Scheme 
 
4.1. Principle and Characteristics   
 

In this sub-section we present the coordinated 
checkpointing protocol we developed and used in this 
work for NoCs.  

We base our approach on classical protocols [14] 
[15] and stress some features required by systems-on-
chip. In our protocol, any task can initiate a checkpoint, 
but the coordination is done each time by the same 
unique dedicated task (the RMU). Also, all rollback 
requests pass by the RMU. Having a unique RMU for a 
communicating task group presents the advantage of 
simplicity, lower traffic overhead and lower costs in 
terms of area and power consumption, as detailed 
subsequently. One of the advantages is that the 
checkpoint validation by broadcast can be avoided, 
reducing thus the traffic overload. Instead, a task knows 
whether its last checkpoint is valid or not upon the 
receipt of either a CK_REQ (checkpoint request 
message) or a rollback request, when the RMU also 
communicates the index of the respective checkpoint. 
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Besides, the unique RMU approach helps simplifying 
the protocol. It avoids the synchronization needed 
when several RMUs start a checkpointing phase, which 
also reduces the associated overload in the 
communication network. Moreover, passing rollback 
requests by the unique RMU avoids the situation when, 
in case of rollback request from a task, some tasks have 
already received from the former RMU the validation 
of the latest checkpoint and others have not. Finally, 
having only a RMU in a communicating PE group 
implies less hardware and less power compared with 
the situation when more (or all) PEs have to run an 
RMU task. 

The proposed failure recovery mechanism tolerates 
single and multiple failures. In addition, several failures 
can be treated in a single recovery phase if they occur 
relatively close in time, i.e., if the time interval between 
two failures is comparable to the recovery protocol 
duration. Thus, for higher failure rates, treating several 
failures in the same recovery phase contributes to 
reducing the overall latency, since a rollback to an old 
checkpoint is performed only once instead of several 
times. 

The coordinated protocol we developed requires 
little extra information to be stored by each task and 
does not use timestamps [2], therefore it can be used 
for both synchronous and GALS (Globally 
Asynchronous, Locally Synchronous) NoCs.  

 
4.2. Consistent State. Early and Late Messages   
 

Global inconsistent states (the dashed curve in 
Figure 4a) can appear as there may be messages 
flowing in the NoC when different task checkpoints are 
taken. These inconsistent states are avoided by treating 
early (appear as received, but never sent) and late 
(appear as sent, but not received) messages. Markers 
exchanged among application tasks serve either to 
avoid early messages (marker 1) or to end the log of 
late messages (marker 2), as depicted in Figure 4b.  

 
  a) Inconsistent global state      b) Consistent global state with 
with early and late messages             forced checkpointing  
                                                                and replay list 
Figure 4. Inconsistent and consistent states 

using markers 

Late messages are logged at the destination together 
with the task state and are to be replayed from this log 

after rollback. Thus, a task is considered to have taken 
its checkpoint only after both its state and all the late 
messages from all other tasks are on stable storage. 
Markers can be explicit dedicated messages or can be 
piggybacked on application messages (called 
checkpoint sequence numbers, CSNs).  
 
4.3. Blocking/Non-blocking Protocol 
 

Figure 5 presents the blocking/non-blocking 
protocol we developed for taking a coordinated 
checkpoint. CSN carried by application messages [14] 
are used, complemented with explicit markers [15]. 
Explicit markers contribute in significantly reducing 
the checkpoint duration when the application traffic 
(carrying CSNs) is scarce. 

The RMU broadcasts a checkpoint request, 
CK_REQ, to the application tasks. Then, these 
exchange markers in order to establish a consistent 
state. After its local checkpoint has been taken, each 
task informs the RMU about this, by sending a 
CK_TAKEN message. Subsequently, the RMU can 
validate the global checkpoint, which is formed by the 
set of local checkpoints, after the CK_TAKEN receipt 
from all tasks. When a task knows its new local 
checkpoint is globally validated, it can remove its 
previous checkpoint from stable storage, so at any 
moment at most two checkpoints must be stored. 
 

 
 
Figure 5. Coordinated checkpointing protocol 

In the non-blocking approach, tasks continue normal 
execution during the checkpointing phase. The same 
sequence of actions presented above is executed for 
checkpointing when the blocking protocol is used, 
except that the task execution is blocked between the 
CK_REQ receipt and the CK_TAKEN send, as 
depicted in Figure 5. However, during the 
checkpointing, late messages are logged and will be 
part of the checkpoint. So, regardless of the blocking or 
non-blocking nature of the checkpoint, the protocol is 
the same and the checkpoint itself has the same content. 
Thus, each task can participate to the global 
checkpointing either by blocking or not its normal 
execution, regardless of the other tasks. 

Application task 
 
- on CK_REQ receipt 
  - broadcast marker  
  - when markers received 
    from all other tasks 
    - take task local 
      checkpoint 
    - send to RMU   
      CK_TAKEN 

RMU 
 
- broadcast CK_REQ  
 
- when CK_TAKEN   

received from all    
tasks 

  - validate global  
    checkpoint 
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5.  Simulations and Evaluation  
 

This section presents the results we obtained by 
simulation using the blocking (B) and non-blocking 
(NB) protocol, under different traffic loads and failure 
rates. All the simulations are run on a 4x4 mesh direct-
connected NoC as the one depicted in Figure 3. 

The first results evaluate the average checkpoint 
duration (Figure 6) for the blocking and non-blocking 
approaches, considering different uniform traffic loads, 
from a very light one to one approaching the maximum 
throughput of the NoC. The traffic load is measured in 
messages/cycle/task and each message has a length of 
64 bytes. 

 

Figure 6. Checkpoint duration  

We observe from Figure 6 that for very low traffic 
loads, the checkpoint duration of the blocking and non-
blocking approaches are approximately the same. 
However, as the traffic load increases, the checkpoint 
duration in the non-blocking case significantly 
increases (the diamond-marked curve). In the blocking 
case (the square-marked curve), the checkpoint 
duration presents only a slight increase. This is possible 
because in the non-blocking case the recovery traffic is 
not significantly delayed by the application traffic (this 
one being blocked), as in the non-blocking case. 
However, the amount of application messages that flow 
through the NoC when the blocking starts is 
proportional to the traffic load, which explains the 
slight checkpoint duration increase with the traffic load, 
in the blocking approach. 

Figure 7 depicts the checkpoint overhead in the 
same scenarios. The same significant ascending trend 
with the traffic load increase can be noticed for the 
non-blocking approach.  

As the traffic load and the checkpoint duration 
increase, the probability of late messages becomes 
more significant, which explains the increase of the 
checkpoint overhead. On the other hand, the blocking 
approach keeps the overhead in very reasonable limits 
when compared to lower traffic load situations. 

 

 

Figure 7. Checkpoint overhead 

The next experiment studies the latency induced in 
the application execution. The latency performance is 
evaluated relative to the ideal case when there are no 
failures and no checkpoints are taken. Two traffic loads 
are considered: 0.01 and 0.03 messages/cycle/task 
(Figures 8 and 9, respectively) and different failure 
rates.  

 

Figure 8. Application execution latency - 
traffic load of 0.01 (messages/cycle/task) 

Normally, the application execution is delayed in the 
blocking approach by blocking the application during 
the checkpointing phases. This can be observed for 
relatively low failure rates (the failure rate is expressed 
in number of failures/cycle/task). However, for higher 
failure rates, we can observe (right side of Figure 8) 
that the blocking approach induces smaller latency than 
the non-blocking one (crosspoint at 7E-4 
failures/cycle/task). 

Moreover, the non-blocking approach becomes 
ineffective for higher failure rates, which is not the case 
for the blocking one. In fact, as the checkpointing 
duration is larger in the non-blocking case than in the 
blocking one, the time interval between two successive 
failures is not long enough to take a new non-blocking 
checkpoint, for higher failure rates. Thus, in the non-
blocking approach, the probability to rollback to the 
same old checkpoint increases. Thus, parts of the 
application are re-executed several times, which leads 
to extremely high latency penalty. 
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For a traffic load three times higher (Figure 9), the 
same trend is maintained, but the crosspoint between 
the two approaches occurs for a lower value of the 
failure rate (3E-4 – see right side of Figure 9).  

 

Figure 9. Application execution latency - 
traffic load of 0.03 (messages/cycle/task) 

This is due to the fact that the difference between 
the checkpointing duration of the blocking and non-
blocking approaches is larger for higher traffic loads 
(as seen in Figure 6).  

Thus, if the expected failure rate is between the two 
traffic crosspoints, different approaches (blocking/non-
blocking) are preferable for different traffic loads.  
 

6.  Conclusions and Future Work 
 

In this work we analyzed and compared the 
effectiveness of blocking and non-blocking 
checkpointing for NoC based systems. We developed a 
protocol allowing both blocking and non-blocking 
modes, which can be dynamically set in depending on 
the actual traffic load and expected failure rate. Also, 
the protocol allows performing the same global 
checkpoint with subsets of blocking tasks and the rest 
non-blocking.  

As future work, we plan to design and implement a 
decision algorithm that will dynamically switch 
between blocking and non-blocking mechanisms for 
each checkpointing phase of each task in the NoC-
based system at run-time. Our initial experiments 
indicate that a decision based on the history of the 
checkpointing time would be well-suited for this 
purpose. We will also evaluate our dynamically-
configured protocol on different types of application 
traffic patterns (not only uniform traffic) with non-
static, bursty characteristics, and long-range 
dependencies. 
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