
Blocking and Non-blocking Checkpointing and Rollback Recovery for
Networks-on-Chip

Claudia Rusu1, Cristian Grecu2, Lorena Anghel1

1 TIMA Laboratory (CNRS-UJF-INPG), 2 University of British Columbia
claudia.rusu@imag.fr, grecuc@ece.ubc.ca, lorena.anghel@imag.fr

Abstract

In this paper we propose a dynamically
reconfigurable failure recovery scheme developed for
Network-on-Chip (NoC) based systems. The recovery
scheme is based on a checkpointing and rollback
protocol and permits enhancing the system fault
tolerance capabilities by exploiting information on
traffic load and failure rate. The increased
performance of the fault tolerance mechanism is
achieved by simply switching between blocking and
non-blocking checkpointing approaches. We analyze
the effectiveness of the solution, considering different
traffic loads and expected failure rates.

Keywords: network-on-chip, fault tolerance, rollback
recovery, checkpoint, performance, failure rate.

1. Introduction

 The use of packet-switched on-chip interconnection
networks, commonly referred to as networks-on-chip
[1] is a promising alternative that addresses the issues
of increasing inter-core communication requirements.
Thus, NoC is emerging as the new on-chip
communication structure, where applications can be
seen as sets of different communicating tasks running
on several processing elements (PEs). Achieving fault
tolerance of large, multi-core designs is recognized as a
challenging design constraint both in industry and
academia.

The major cause affecting the reliability of the VLSI
global interconnects is the shrinking of the feature size,
which exposes them to different faults of permanent,
transient or intermittent nature. Among the fault
sources we can enumerate: process variation, crosstalk,
electromagnetic interference and cosmic radiation hits.
These phenomena can alter the timing and functionality
of the NoC fabrics and thus degrade their
characteristics, leading, eventually, to failures of the

NoC-based systems. A failure, even if it only affects an
element of the system, can lead to restarting the entire
application from its initial state, which can be
unacceptable, especially for critical applications.

Rollback recovery has been largely employed as a
fault tolerant mechanism at system and application
level, in distributed and parallel systems and can also
serve a similar purpose in NoC-based systems. Figure 1
illustrates the rollback recovery principle vs. restart.

Figure 1. Rollback recovery vs. restart

The mechanism implies periodically saving
(checkpointing), during the failure-free execution, of
consistent states, on stable storage. The latter is a
memory element whose content persists through the
tolerated failures. A state is consistent if it could be
reached following a correct and error-free execution of
the application from the start point. In case of failure, a
rollback is performed, i.e. the application resumes
execution from the most recent consistent state.

Several approaches of rollback recovery have been
proposed [2]. In distributed systems, pure
uncoordinated checkpointing suffers from domino
effect [3], caused by low probability to form a
consistent state by individual checkpoints (it is assumed
that each individual system forming a distributed
system is able to take checkpoint). To avoid the
domino effect, this method is usually complemented by
message logging, at the price of higher overhead. Due
to its simplicity and lower overhead when compared to
other methods, coordinated checkpointing is preferable
in practice [2]. Since these features are not only
desirable, but rather required for systems-on-chip
(SoC), we will use in this work the coordinated
checkpointing.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 1/6

During the failure-free execution, when taking a
global checkpoint using the coordinated protocol, all
tasks must synchronize with each other, in order to set a
consistent global state. The coordinated checkpointing
principle is depicted in Figure 2.

Figure 2. Coordinated checkpointing
principle

The global synchronization coordinator is a
dedicated task, which we call the recovery management
unit (RMU).

During the global synchronization phases,
synchronization messages are exchanged among tasks.
Both blocking and non-blocking checkpointing
methods were proposed. In the blocking approach,
tasks block their normal execution during
checkpointing and exchange only synchronization
messages, while in the non-blocking one, tasks overlap
their normal execution with the synchronization phase.
Generally, the non-blocking approach is preferred due
to its lower latency. Thus, there are many works
dedicated to proposing new or improved non-blocking
protocols for distributed and parallel systems.

For typical SoC applications, the nature of the
communication pattern is mostly heterogeneous, with
certain task sets exchanging data more frequently than
others. Different applications with their own disjoint
task sets can also run simultaneously on the NoC-based
system [4]. Even if the tasks in different disjoint sets do
not exchange data with each other, they may compete
for NoC resources (routers, channels). Mapping the
application tasks to PEs is an important step in the NoC
design flow, and is generally performed with the
objective of minimizing communication latency and
power dissipation [5]. Also, it is desirable to adapt the
checkpoint and rollback recovery method to the
specifics of the communication pattern, and optimize
the recovery mechanisms such that the latency and
overhead they incur are reduced as much as possible.

One of the main limitations of the coordinated
checkpointing protocol is the duration of the global
synchronization. With the increase of the network size
and/or traffic load, the checkpointing duration
increases. As the protocol allows no overlapping of

checkpointing phases, the possible interval of time
between two consecutive checkpoints enlarges. In
consequence, after a rollback in case of failure, re-
bringing the application to the failure-free state incurs
greater latency.

This situation becomes even more drastic when the
synchronization latency cannot be reduced below the
expected interval between two consecutive failures. In
such cases, there is no sufficient time to take a new
global checkpoint, so the application always rolls back
to the last one. When the probability of occurrence of
these conditions is high, the application stops
advancing its execution.

In this work we show that this kind of situations are
better solved using a blocking checkpointing approach.
The main contribution of this work is the development
of a checkpointing protocol that can run in either
blocking or non-blocking mode, for NoC based
systems. It can dynamically change its mode exploiting
information on traffic load and failure rate in order to
obtain an optimum performance. Moreover, as the
same protocol is used, it offers the possibility to block
only the execution of a subset of participating tasks,
while the others checkpoint without blocking (useful
for critical tasks or tasks that do not significantly
overload the NoC resources).

The rest of the paper is organized as follows. In
Section 2 we present related works regarding NoC fault
tolerance and blocking/non-blocking checkpointing
approaches. Section 3 describes the system and
application model. Section 4 presents the checkpoint-
rollback recovery scheme. Simulation results are
presented in Section 5. Section 6 contains the
concluding remarks and future work.

2. Related Work

Using the common layered representation of
distributed networked systems, we can classify the
currently proposed fault tolerant schemes for NoC
based systems depending on the layer(s) onto which
they are placed in the communication stack. At the
lowest level we find fault tolerant approaches based on
hardware redundancy (NMR – N modular redundancy)
[6], where NoC links are duplicated.

At higher levels we find solutions based on error
detection and correction, eventually combined with
retransmission [7] [8]. Some of the coding-based
solutions consider crosstalk as an important source of
data corruption, and devise crosstalk-avoidance
methods, sometimes combined with single or multiple
error correction mechanisms [9]. These methods can be
applied either inter-router or to end-to-end channels.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 2/6

A few adaptive routing techniques were proposed
for avoiding permanent faults in NoC components
(links or routers). Adaptive routing has the
disadvantage of not being able to handle transient
errors, therefore must be combined with error
detection/correction schemes when transient errors are
a concern. A solution that can cope with transient
errors without a need for error control schemes is
stochastic communication [10], where data is
forwarded from the source to destination cores on
multiple paths, selected probabilistically, such that the
probability of a message being received correctly can
be significantly improved. Stochastic methods are,
however, resource intensive and tend to saturate the
network quickly due to multiple copies of the same
message being transported through the network
simultaneously.

Failure recovery through checkpointing and rollback
complements the above mentioned fault tolerant
methods by adding an extra level of safety when a
failure occurs and it is not solved by any of the
methods at lower levels.

Blocking [15] or non-blocking [17] checkpointing
protocols were previously proposed for computer
networks and super-computers. Different approaches
were proposed to reduce the overhead of coordinated
checkpointing algorithms, like minimizing the number
of synchronization messages and the number of
checkpoints, making the checkpoint non-blocking or
combinations of these [11]. A quantitative comparison
between two different blocking and non-blocking
protocols for large scale MPI (message passing
interface) systems was addressed in [16].

Another direction for enhancing the overall
checkpointing performance is the communication-
induced checkpointing (CIC). CIC protocols were
proposed as an improved approach combining the
coordinated and the uncoordinated checkpointing
protocols. They attempt to reduce the number of tasks
participating in the global checkpointing by a
dynamical analysis of the traffic pattern. However, a
more recent work [12] shows that CIC protocols do not
scale well for larger number of tasks. Hierarchical
checkpointing protocols have also been proposed for
large clusters and cluster federations using coordinated
checkpointing or combining coordinated checkpointing
and CIC [13].

3. System and Application Model

In this work, the NoC-based multi-core system-on-
chip is modeled as a set of PEs interconnected by a
message-passing communication fabric. At any time,

one or several computing tasks can be mapped onto
each processing element. During execution, the tasks
exchange data in form of packets using a wormhole
switching technique, with messages organized in sets of
basic flow control units (flits). The first flit of each
message (the header flit) establishes the path between
the corresponding source and destination PEs, and the
subsequent data flits follow the header in a pipelined
fashion. The last flit of the message, the tail flit, ends
the transmission and frees the resources reserved by the
header. As for routing, the XY algorithm is used.

For simulations we used a mesh direct-connected
NoC, as the one depicted in Figure 3, with one task
mapped onto each PE.

Figure 3. 4x4 mesh direct NoC

The stable storage is local to each PE, so the
checkpoints do not overload the network when stored
to the stable storage.

4. Recovery Scheme

4.1. Principle and Characteristics

In this sub-section we present the coordinated
checkpointing protocol we developed and used in this
work for NoCs.

We base our approach on classical protocols [14]
[15] and stress some features required by systems-on-
chip. In our protocol, any task can initiate a checkpoint,
but the coordination is done each time by the same
unique dedicated task (the RMU). Also, all rollback
requests pass by the RMU. Having a unique RMU for a
communicating task group presents the advantage of
simplicity, lower traffic overhead and lower costs in
terms of area and power consumption, as detailed
subsequently. One of the advantages is that the
checkpoint validation by broadcast can be avoided,
reducing thus the traffic overload. Instead, a task knows
whether its last checkpoint is valid or not upon the
receipt of either a CK_REQ (checkpoint request
message) or a rollback request, when the RMU also
communicates the index of the respective checkpoint.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 3/6

Besides, the unique RMU approach helps simplifying
the protocol. It avoids the synchronization needed
when several RMUs start a checkpointing phase, which
also reduces the associated overload in the
communication network. Moreover, passing rollback
requests by the unique RMU avoids the situation when,
in case of rollback request from a task, some tasks have
already received from the former RMU the validation
of the latest checkpoint and others have not. Finally,
having only a RMU in a communicating PE group
implies less hardware and less power compared with
the situation when more (or all) PEs have to run an
RMU task.

The proposed failure recovery mechanism tolerates
single and multiple failures. In addition, several failures
can be treated in a single recovery phase if they occur
relatively close in time, i.e., if the time interval between
two failures is comparable to the recovery protocol
duration. Thus, for higher failure rates, treating several
failures in the same recovery phase contributes to
reducing the overall latency, since a rollback to an old
checkpoint is performed only once instead of several
times.

The coordinated protocol we developed requires
little extra information to be stored by each task and
does not use timestamps [2], therefore it can be used
for both synchronous and GALS (Globally
Asynchronous, Locally Synchronous) NoCs.

4.2. Consistent State. Early and Late Messages

Global inconsistent states (the dashed curve in
Figure 4a) can appear as there may be messages
flowing in the NoC when different task checkpoints are
taken. These inconsistent states are avoided by treating
early (appear as received, but never sent) and late
(appear as sent, but not received) messages. Markers
exchanged among application tasks serve either to
avoid early messages (marker 1) or to end the log of
late messages (marker 2), as depicted in Figure 4b.

 a) Inconsistent global state b) Consistent global state with
with early and late messages forced checkpointing
 and replay list
Figure 4. Inconsistent and consistent states

using markers

Late messages are logged at the destination together
with the task state and are to be replayed from this log

after rollback. Thus, a task is considered to have taken
its checkpoint only after both its state and all the late
messages from all other tasks are on stable storage.
Markers can be explicit dedicated messages or can be
piggybacked on application messages (called
checkpoint sequence numbers, CSNs).

4.3. Blocking/Non-blocking Protocol

Figure 5 presents the blocking/non-blocking
protocol we developed for taking a coordinated
checkpoint. CSN carried by application messages [14]
are used, complemented with explicit markers [15].
Explicit markers contribute in significantly reducing
the checkpoint duration when the application traffic
(carrying CSNs) is scarce.

The RMU broadcasts a checkpoint request,
CK_REQ, to the application tasks. Then, these
exchange markers in order to establish a consistent
state. After its local checkpoint has been taken, each
task informs the RMU about this, by sending a
CK_TAKEN message. Subsequently, the RMU can
validate the global checkpoint, which is formed by the
set of local checkpoints, after the CK_TAKEN receipt
from all tasks. When a task knows its new local
checkpoint is globally validated, it can remove its
previous checkpoint from stable storage, so at any
moment at most two checkpoints must be stored.

Figure 5. Coordinated checkpointing protocol

In the non-blocking approach, tasks continue normal
execution during the checkpointing phase. The same
sequence of actions presented above is executed for
checkpointing when the blocking protocol is used,
except that the task execution is blocked between the
CK_REQ receipt and the CK_TAKEN send, as
depicted in Figure 5. However, during the
checkpointing, late messages are logged and will be
part of the checkpoint. So, regardless of the blocking or
non-blocking nature of the checkpoint, the protocol is
the same and the checkpoint itself has the same content.
Thus, each task can participate to the global
checkpointing either by blocking or not its normal
execution, regardless of the other tasks.

Application task

- on CK_REQ receipt
 - broadcast marker
 - when markers received
 from all other tasks
 - take task local
 checkpoint
 - send to RMU
 CK_TAKEN

RMU

- broadcast CK_REQ

- when CK_TAKEN

received from all
tasks

 - validate global
 checkpoint

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 4/6

5. Simulations and Evaluation

This section presents the results we obtained by
simulation using the blocking (B) and non-blocking
(NB) protocol, under different traffic loads and failure
rates. All the simulations are run on a 4x4 mesh direct-
connected NoC as the one depicted in Figure 3.

The first results evaluate the average checkpoint
duration (Figure 6) for the blocking and non-blocking
approaches, considering different uniform traffic loads,
from a very light one to one approaching the maximum
throughput of the NoC. The traffic load is measured in
messages/cycle/task and each message has a length of
64 bytes.

Figure 6. Checkpoint duration

We observe from Figure 6 that for very low traffic
loads, the checkpoint duration of the blocking and non-
blocking approaches are approximately the same.
However, as the traffic load increases, the checkpoint
duration in the non-blocking case significantly
increases (the diamond-marked curve). In the blocking
case (the square-marked curve), the checkpoint
duration presents only a slight increase. This is possible
because in the non-blocking case the recovery traffic is
not significantly delayed by the application traffic (this
one being blocked), as in the non-blocking case.
However, the amount of application messages that flow
through the NoC when the blocking starts is
proportional to the traffic load, which explains the
slight checkpoint duration increase with the traffic load,
in the blocking approach.

Figure 7 depicts the checkpoint overhead in the
same scenarios. The same significant ascending trend
with the traffic load increase can be noticed for the
non-blocking approach.

As the traffic load and the checkpoint duration
increase, the probability of late messages becomes
more significant, which explains the increase of the
checkpoint overhead. On the other hand, the blocking
approach keeps the overhead in very reasonable limits
when compared to lower traffic load situations.

Figure 7. Checkpoint overhead

The next experiment studies the latency induced in
the application execution. The latency performance is
evaluated relative to the ideal case when there are no
failures and no checkpoints are taken. Two traffic loads
are considered: 0.01 and 0.03 messages/cycle/task
(Figures 8 and 9, respectively) and different failure
rates.

Figure 8. Application execution latency -
traffic load of 0.01 (messages/cycle/task)

Normally, the application execution is delayed in the
blocking approach by blocking the application during
the checkpointing phases. This can be observed for
relatively low failure rates (the failure rate is expressed
in number of failures/cycle/task). However, for higher
failure rates, we can observe (right side of Figure 8)
that the blocking approach induces smaller latency than
the non-blocking one (crosspoint at 7E-4
failures/cycle/task).

Moreover, the non-blocking approach becomes
ineffective for higher failure rates, which is not the case
for the blocking one. In fact, as the checkpointing
duration is larger in the non-blocking case than in the
blocking one, the time interval between two successive
failures is not long enough to take a new non-blocking
checkpoint, for higher failure rates. Thus, in the non-
blocking approach, the probability to rollback to the
same old checkpoint increases. Thus, parts of the
application are re-executed several times, which leads
to extremely high latency penalty.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 5/6

For a traffic load three times higher (Figure 9), the
same trend is maintained, but the crosspoint between
the two approaches occurs for a lower value of the
failure rate (3E-4 – see right side of Figure 9).

Figure 9. Application execution latency -
traffic load of 0.03 (messages/cycle/task)

This is due to the fact that the difference between
the checkpointing duration of the blocking and non-
blocking approaches is larger for higher traffic loads
(as seen in Figure 6).

Thus, if the expected failure rate is between the two
traffic crosspoints, different approaches (blocking/non-
blocking) are preferable for different traffic loads.

6. Conclusions and Future Work

In this work we analyzed and compared the
effectiveness of blocking and non-blocking
checkpointing for NoC based systems. We developed a
protocol allowing both blocking and non-blocking
modes, which can be dynamically set in depending on
the actual traffic load and expected failure rate. Also,
the protocol allows performing the same global
checkpoint with subsets of blocking tasks and the rest
non-blocking.

As future work, we plan to design and implement a
decision algorithm that will dynamically switch
between blocking and non-blocking mechanisms for
each checkpointing phase of each task in the NoC-
based system at run-time. Our initial experiments
indicate that a decision based on the history of the
checkpointing time would be well-suited for this
purpose. We will also evaluate our dynamically-
configured protocol on different types of application
traffic patterns (not only uniform traffic) with non-
static, bursty characteristics, and long-range
dependencies.

7. References

[1] L. Benini, G. De Micheli. "Networks on chips: a new
SoC paradigm". Computer, Vol. 35, Issue 1, Jan 2002, pp: 70-
78.

[2] M. Elnozahy, L Alvisi, Y. M. Wang, D. B. Johnson. "A
survey of rollback-recovery protocols in message-passing
systems". ACM Computing Surveys, Vol. 34, No. 3,
September 2002, pp: 375-408.
[3] B. Randell. "System structure for software fault
tolerance". IEEE Trans. Software Eng., 1, pp: 220-232, 1975.
[4] A. Hansson, M. Coenen, K. Goossens. "Undisrupted
Quality-of-Service during reconfiguration of multiple
applications in networks on chip". Proc. of Design,
Automation & Test in Europe Conference & Exhibition,
2007. DATE '07, pp: 954-959.
[5] C. Marcon, N. Calazans, F. Moraes, A. Susin, I. Reis, F.
Hessel. "Exploring NoC mapping strategies: an energy and
timing aware technique". Proc. of Design, Automation and
Test in Europe, March 2005, pp: 502 - 507 Vol. 1.
[6] B. Joshi, D. Pradhan, J. Stiffler. "Fault-tolerant
computing". Wiley Encyclopedia of Computer Science and
Engineering, January 15, 2008.
[7] S. Murali, G. De Micheli, L. Benini, T. Theocharides,
N. Vijaykrishnan, M. Irwin. "Analysis of error recovery
schemes for networks on chips". IEEE Design & Test of
Computers, Vol. 22, no. 5, pp: 434-442, 2005.
[8] D. Rossi, P. Angelini, C. Metra. "Configurable error
control scheme for NoC signal integrity". International On
Line Testing Symposium (IOLTS), 2007, pp: 43-48.
[9] A. Ganguly, P.P. Pande, B. Belzer, C. Grecu. "Design of
low power & reliable networks on chip through joint crosstalk
avoidance and multiple error correction coding". Journal of
Electronic Testing, Theory and Applications (JETTA),
online, January 2008.
[10] T. Dumitras, R. Marculescu. "On-chip stochastic
communication". Design Automation & Test in Europe
(DATE), March, 2003, pp: 790- 795.
[11] G. Cao, M. Singhal. "On Coordinated Checkpointing in
Distributed Systems". IEEE Trans. on Parallel and
Distributed Systems, Vol. 9 n.12, pp: 1213-1225, 1998.
[12] L. Alvisi, E.N. Elnozahy, S. Rao, S.A. Husain, and A.
Del Mel. "An analysis of communication-induced
checkpointing". 29th International Symposium of Fault-
Tolerant Computing, pp: 242-249, June 1999.
[13] S. Monnet, C. Morin, and R. Badrinath. "A hierarchical
checkpointing protocol for parallel applications in cluster
federations". 18th International Parallel and Distributed
Processing Symposium (IPDPS), 2004.
[14] E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel. "The
performance of consistent checkpointing". Proc. 11th
Symposium on Reliable Distributed Systems, pp: 86–95, Oct.
1992.
[15] K.M. Chandy, L. Lamport. "Distributed snapshots:
Determining global states of distributed systems". ACM
Trans. on Computing Systems 31, 1, pp: 63-75, 1985.
[16] D. Buntinas, C. Coti, T. Herault, P. Lemarinier, L.
Pilard, A. Rezmerita, E. Rodriguez, F. Cappello. "Blocking
vs. Non-Blocking Coordinated Checkpointing for Large-Scale
Fault Tolerant MPI". Elsevier, Future Generation Computer
Systems, Vol. 24, Issue 1, January 2008, pp: 73-84.
[17] F. Quaglia, A. Santoro. "Modeling and optimization of
non-blocking checkpointing for optimistic simulation on
myrinet clusters". International Conference on
Supercomputing 2003, pp: 130-139, 2003.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 6/6

