
Low-Cost Self-Test of Crypto Devices

G. Di Natale, M. Doulcier, M. L. Flottes, B. Rouzeyre
Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier

Université Montpellier II / CNRS UMR 5506
161 rue Ada, 34392 Montpellier Cedex 5, France

{dinatale,doulcier,flottes,rouzeyre}@lirmm.fr

Abstract

Testability is a major issue, particularly for secure

chips. Design-for-Testability techniques based on scan
chains proved to be a highway for potential attacks.
BIST approaches appear as good alternatives since
they do not rely on visible scan chains. In this paper
we propose a generic BIST solution for block-cipher
devices. Taking advantage of the iterative process
involved in such encryption algorithms which results in
structural implementation consisting of (quasi)
identical round transformations executed by the same
piece of hardware, self-test procedures are easily set-
up. Compared to classical BIST solutions based on
pseudo-random test pattern generation and output
responses compactors, its main advantages are a
negligible area overhead and a very short test time,
while guaranteeing 100% of fault coverage.

1. Introduction

Public, industry, and state agencies rely on

cryptography for the protection of information and
communications in various domains of application
such as pay TV, e-commerce, critical infrastructures,
etc. At the core of the device offering cryptographic
services is the cryptographic module. Crypto-cores
execute cryptographic algorithms for providing
services such as privacy, confidentiality, integrity, and
authentication. Although cryptography is used to
provide security, weaknesses such as weak crypto-
algorithms, poor design or physical failure of the
hardware platform that implements the crypto-
algorithm can render the product insecure and place
highly sensitive information at risk. Consequently,
appropriate validation and testing of the crypto-
algorithm and corresponding crypto-core are essential
to provide security assurance.

United States National Institute for Standards and
Technology (NIST) organized contest for selecting

encryption standards. The Data Encryption Standard
(DES) [1] was adopted as national standard in 1976,
and the Advanced Encryption Standard (AES) [2] has
been selected in October 2000. Since the hardware
implementation of DES is not expensive, it is still used
in many applications in the form of Triple DES for
security improvement [3].

Validation of such algorithms for efficient
encryption is not discussed here. This paper aims at
providing efficient test solution for the physical
platform that implements the crypto-algorithm, i.e. the
dedicated piece of hardware that executes the
encryption.

Independently of the intended function, defects
created during the manufacturing process of integrated
circuit (IC) are unavoidable and some number of ICs is
expected to be faulty. Post-manufacturing testing is
thus required to guarantee fault free products. It’s all
the more important for applications requiring digital
security because a faulty chip could fail to protect the
secret data.

IC testing consists of applying a set of test stimuli
to the inputs of the device under test (a crypto core for
instance) while analysing the output responses.
Circuits that produce the expected responses pass the
test and are considered to be fault-free.

Due to the extremely large number of possible
defect types and defect locations, fault models are used
for computational efficiency during fault simulation
and test stimuli generation. A combination of different
fault models is generally used in the evaluation of
testing approaches; among them the stuck-at fault
model remains inescapable.

Detection of such faults generally requires test-
oriented design methodology that aim to facilitate
generation of proper test stimuli. Scan design is the
most widely used structured Design-for-Testability
(DfT) methodology. While it greatly facilitates the test
of the IC and minimizes the probability to deliver
faulty chips, it compromises the security of the system

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 1/6

since it provides facilities for controlling or observing
sensitive data. Scan based attacks have been
demonstrated in [4] (DES) and [5] (AES).
Countermeasure such as secure scan design
methodologies detailed in [5][6][7][8][9] prevent
abusive usage of the scan facility but requires extra
area and design efforts.

Conversely, the Built-In Self-Test (BIST) approach
does not require visible scan chains. The test patterns
are classically generated on chip by an additional Test
Pattern Generator (TPG) and test responses are
compacted into a signature before comparison with the
pre-computed golden one with the help of a Signature
Analyzer (SA). The result of the comparison is the
only test output. This test strategy is a good alternative
if it provides low area overhead and acceptable fault
coverage.

Note that apart from its recurrent cost, extra silicon
area for BIST may in turn be subject to faults. As
usual, additional hardware for BIST implementation
must be kept as low as possible.

Conversely to scan design relying on deterministic
test sequences, BIST classically relies on pseudo-
random sequences due to the impossibility to store or
generate deterministic sequences at low cost with built-
in hardware.

However, pseudo-random testing is an efficient
technique for crypto-cores [10]. High fault coverage
can be achieved with short pseudo-random test
sequences because traditional cryptographic operations
(XOR, substitution, modulo, …) are easily tested with
random data. Moreover, the inherent properties of
these operations allow the propagation of random data
through the circuit.

In order to save TPG and SA related area
overheads, we propose a BIST methodology
specifically designed for block-cipher circuits. The
proposed BIST technique incurs almost no area
overhead.

The paper is organized as follows: Section 2
discusses inherent properties of cryptographic
algorithms and it introduces the BIST approach.
Section 3 describes the DES and the AES, while
Section 4 presents experimental results. Eventually,
Section 5 concludes this paper.

2. Cryptography and testability

The security provided by block cipher algorithms

such as Data Encryption Standard (DES) and its
successor the Advanced Encryption Standard (AES)
relies on two main properties named "diffusion and
confusion". Confusion refers to making the relationship
between the key and the ciphertext as complex and

involved as possible; diffusion refers to the property
that redundancy in the statistics of the plaintext is
"dissipated" in the statistics of the ciphertext. Those
properties are supported by using a Feistel [11][1]
network in the first case and by a substitution-
permutation network for the later one (see next
sections).

These two algorithms also have some common
characteristics:
• They are iterative algorithms. DES is composed of

16 rounds while AES is made of 10 rounds. All
rounds are identical i.e. the result of a round is used
as the input of the next round. Since the rounds are
identical, their hardware implementations typically
consist of a single round and a feedback loop.

• Ciphering and deciphering algorithms are almost
identical.

• Since block ciphering is a bijective operation (one-
to-one mapping), each round is a bijective
operation too (on a set of 264 elements for DES, on
a set of and 2128 elements for AES).

The diffusion property is a very interesting feature
with regard to the test of their hardware
implementation:
• It implies that every input bit of a round influences

many output bits, i.e. every input line of a round is
in the logic cone of many output bits. In other
words, an error caused by a fault in the body of the
round is very likely to propagate to the output.
Thus, the circuit is very observable.

• Moreover, since rounds are bijective, the input
logic cone of every output contains many inputs. In
other words, each fault is highly controllable.

It can be concluded that the circuits are highly testable
by nature.

Thus, for this kind of circuit, we propose the
following self-test procedure:

1. Encrypt an initial message M0 into M1=E(M0)
2. Repeat n times : Mi+1 = E(Mi)
3. Compare the final cipher Mn with the expected

one E(E(E(…..E(M)…)). If they differ, the
circuit is faulty otherwise it is correct.

In other words, the result of an encryption is used
as the next test vector. It should be noticed than for
n encryptions, the main part of the circuit under test
(i.e. the hardware implementation of the round)
receives R test vectors, being R the number of
iterations of the concerned algorithm (R=10 for the
AES, R=16 for the DES).

We investigate now whether this procedure leads to
the application of n×R distinct test vectors.

To our knowledge, there is no published general
result about the length of the cycles on the output state

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 2/6

graph for either algorithm. Nevertheless, we conjecture
that the length k of such a cycle (i.e. Mi+k = Mi) is quite
large. Since the support set is very large (264 or 2128),
and the encryption is bijective, these two algorithms
can be considered as random permutations. As a
consequence, the probability distribution function is
flat. It can be computed that the expected cycle length
is 264/2 for DES and 2128/2 for AES. Thus the
probability that the output states fail in a loop is very
small for moderate values of n. In practice (see section
5) we never observed such cycles.

To resume, whatever the initial message M0 and the
secret key (except weak keys of DES), the actual
length of the test sequence will be n×R.

Finally, concerning test response comparison, due
to the diffusion property and to the size of the support
sets, the fault masking phenomenon is very unlikely to
happen. That is, there are very few chances that in the
presence of a fault the final signature equals to the
correct one (and again we never noticed this
phenomenon).

3. Symmetric encryption algorithms

In this section we describe the characteristics of

two considered algorithms Data Encryption Standard
(DES) and Advanced Encryption Standard (AES).

3.1. Data Encryption Standard (DES)
The Data Encryption Standard (DES) has been

selected as an official Federal Information Processing
Standard (FIPS) for the United States in 1976. DES is
a block cipher, with a block size of 64 bits and a key of
64 bits. However, only 56 bits of the key are actually
used by the algorithm, while the other 8 bits are used
for checking parity, and are thereafter discarded.

The algorithm's overall structure is shown in Figure
1.a: There are 16 identical stages of processing, called
rounds. There are also an initial and a final
permutation, called IP and FP, which are inverses (i.e.,
IP(x) = FP-1(x)).

In each round, the block is divided into two 32-bit
halves and processed alternately. This crossing scheme
is known as the Feistel scheme [11]. The F-function
scrambles half a block together with some of the key.
The output from the F-function is then combined with
the other half of the block, and the halves are swapped
before the next round. After the final round, the halves
are not swapped; this is a feature of the Feistel
structure which makes encryption and decryption
similar processes.

The F-function, depicted in Figure 1.b, operates on
half a block (32 bits) at a time and consists of four
stages:

• Expansion: the 32-bit half-block is expanded to 48
bits using the expansion permutation, denoted E in
the diagram, by duplicating some of the bits;

• Key mixing: the result is combined with a subkey
using an XOR operation. Sixteen 48-bit subkeys
(one for each round) are derived from the main key
using the key schedule (described below);

• Substitution: after mixing in the subkey, the block
is divided into eight 6-bit pieces before processing
by the S-boxes, or substitution boxes. Each of the
eight S-boxes replaces its six input bits with four
output bits according to a non-linear
transformation, provided in the form of a lookup
table;

• Permutation: finally, the 32 outputs from the S-
boxes are rearranged according to a fixed
permutation, the P-box.

In order to generate the round keys, the 56 bits of

the original key are divided into two 28-bit halves;
each half is thereafter treated separately. In successive
rounds, both halves are rotated left by one or two bits
(specified for each round), and then 48 subkey bits are
selected: 24 bits from the left half, and 24 from the
right.

(a) Overall structure of DES (b) Function F
Figure 1: DES Algorithm

3.2. Advanced Encryption Standard (AES)

AES [2] is a block cipher adopted as an encryption

standard by the U.S. government. AES began
immediately to replace the Data Encryption Standard
(DES, used since 1976) for the reason that it
outperforms in long-term security thanks to, among
other things, larger key sizes (128, 192, or 256 bits).

Another major advantage of AES is its efficient
implementation on various platforms. It is suitable for
small 8-bit microprocessor platforms, common 32-bit
processors, and dedicated hardware implementations
that can reach throughput rates in the gigabit range.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 3/6

The AES algorithm’s internal operations are
performed on a two dimensional array of bytes called
State. For sake of simplicity, we focus on key length
equal to 128 bits. The State consists of 4 rows of bytes
and each row has Nb=4 bytes. Each byte is denoted by
Si,j (0 ≤ i < 4, 0 ≤ j < Nb) . The four bytes in each
column of the State array form a 32-bit word, with the
row number as the index for the four bytes in each
word. The 128-bit block can be expressed as 16 bytes:
in0, in1, in2… in15. Encryption and decryption processes
are performed on the State, at the end of which the
final value is mapped to the output bytes array out0,
out1, out2, … out15.

The AES algorithm is an iterative algorithm
composed of 10 rounds. At the start of encryption,
input is copied to the State array. After the initial secret
key addition (roundkey(0)), the first 9 rounds are
identical, with small difference in the final round. As
illustrated in Figure 2, each of the first 9 rounds
consists of 4 transformations: SubBytes, ShiftRows,
MixColumns and AddRoundKey. The final round
excludes the MixColumns transformation.

The encryption scheme in Figure 1 can be inverted
to get a straightforward structure for decryption.

SubBytes Transformation
The SubBytes transformation is a non-linear byte

substitution that operates independently on each byte
of the State using a substitution table (S-Box). This S-
Box is constructed by composing two transformations:
1. Take the multiplicative inverse in the finite field

GF(28); the element (00000000)2 is mapped to
itself;

2. Apply the following affine transformation (over
GF(2)):

iiiiiii cbbbbbb ⊕⊕⊕⊕⊕= ++++ 8mod)7(8mod)6(8mod)5(8mod)4(
'

for 0 ≤ i < 8, where bi is the ith bit of the byte, and ci
is the ith bit of a byte c whose value is fixed and is
equal to {01100011}.
This transformation can be pre-calculated for each

possible input value since it works on a single byte,
therefore there are only 256 values. S-Boxes can be
implemented either as a ROM or as combinational
logic.

ShiftRows Transformation
In this transformation, the bytes in the first row of

the State do not change. The second, third, and fourth
rows shift cyclically to the left one byte, two bytes, and
three bytes, respectively.

Figure 2: AES Algorithm (encryption)

MixColumns Transformation
The MixColumns transformation is performed on

the State array column-by-column. Each column is
considered as a four-term polynomial over GF(28) and
multiplied by a(x) modulo x4 + 1, where:

a(x) = (00000011)2 x3 + (00000001)2 x2 +
(00000001)2 x + (00000010)2

AddRoundKey Transformation
In AddRoundKey transformation, a roundkey is

added to the State array by bitwise XOR operation.
Each roundkey consists of 16 words generated from
Key Expansion described below.

Key Expansion
The key expansion routine, as part of the overall

AES algorithm, takes the input secret key of 128 bits.
The output is an expanded key of 11*128 bits, i.e., the
expanded key is composed of the secret key and 10
roundkeys, one for each round. Details of the algorithm
that allows determining the value of each roundkey are
given in [2].

4. Testability Analysis

In the following two sub-sections we provide some
results related to the area overhead and the fault
coverage for the self-test scheme, applied to the DES
and the AES. The two architectures have been
described in VHDL and synthesized using Synopsys
Design Compiler [14] using a 350nm CMOS library
provided by AMS [15].

In both cases we have studied a theoretical approach
to pre-calculate the number of encryptions needed to
reach 100% of fault coverage. We considered the
following aspects:
1. the stream generated by a crypto algorithm when

the input is fed by its output can be considered as

Plaintext (128 bits)

Ciphertext (128 bits)

roundkey(0)

for i=1 to 9

SubBytes

ShiftRows

MixColumns

roundkey(i)

SubBytes

ShiftRows

roundkey(10)

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 4/6

random. Strong randomness is an inherent feature
of crypto algorithms. This property has been
confirmed using the NIST statistical tests [12]. In
both cases the bit streams passed the 15
randomness test [13];

2. substitution boxes represent the biggest part of the
device, and their inputs are independently fed by a
sub-part of the input. We can therefore assume that
they are fed by a random stream;

3. each substitution box needs N deterministic
patterns to be fully tested and it receives one
pattern every clock cycle;

4. we assume that test patterns able to test faults in the
Sbox are also able to test faults in the remaining
parts of the circuit (see 5.1 and 5.2 for details on
the particular architecture).

All these points allow us to estimate the number of

clock cycles (and therefore the number of encryptions)
required to fully test the circuit using the formula that
gives the minimal-length random sequence that would
include N patterns, having probability p to appear, with
a given confidence level [13]:

[] ()n
k

1i

1i ip1
i
k

1)(1nXP −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=≤ ∑

=

+ (1)

4.1 DES Hardware Implementation

The architecture of the Self-Test approach for DES
is depicted in Figure 3. The area overhead of the
proposed approach is equal to 3,58%, corresponding to
the initial 64-bits multiplexer and some additional
logic for the control unit.

In order to determine the number of clock cycles
required to fully test the circuit we applied the equation
(1). In particular, we considered a confidence level of
99% for a sequence of k=64 patterns (i.e., the
exhaustive set of input pattern for the Sbox), where
each pattern has the same probability to appear
(p=1/64). From this equation it comes that the length of
a random sequence that contains each necessary vector
with a confidence level of 99% is n=540 patterns.

According to the implementation of the Sboxes, and
in particular based on the actual number of
deterministic patterns k (≤64) required to fully test the
Sbox, the length of the test procedure can vary from
440 clock cycles (28 encryptions, being each
encryption composed of 16 clock cycles) to 540 cycles
(34 encryptions).

Concerning the other parts of the DES, they are
mainly xor operations and they should be very easily
tested using the same random patterns issued from the
Sboxes.

 Experimental results confirmed this result. We fault
simulated the DES with several keys and initial input

messages. It comes that after 21 encryptions (i.e. 336
clock cycles) the circuit is fully tested.

Register R2

Cipher text

Register R1

Key
Generation

Control

E

SBoxes

P

Start

Test

FP

IP

Plaintext

32 32

64

Figure 3: AES Algorithm (encryption)

4.2 AES Hardware Implementation

The architecture of the Self-Test approach for AES
is depicted in Figure 4. The area overhead of the
proposed approach is equal to 2,13%.

Regarding the testability and the number of
encryptions required to reach 100% of fault coverage,
we computed the minimal-length random sequence
(with a confidence level of 99%) that would include
k=256 patterns (i.e., the exhaustive set of input pattern
for the Sbox), where p is equal in this case to 1/28
(since the Sbox operates on 8 bits). From this equation
it comes that the minimal random sequence length is
n=2593 patterns.

The same experiment have been performed for
various implementations of the Sboxes and thus for
different minimal deterministic test sets. In any case,
the theoretical minimal length of the random sequence
for including the targeted deterministic patterns ranges
from 2400 to 2593 patterns.

Concerning the other operations of the AES,
ShitRow function requires only wires for its
implementation and is tested when every bit of this
interconnection structure has been set to both “0” and
“1” (under the assumption of stuck-at fault model).

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 5/6

This should be easily achieved with the patterns issued
from the Sboxes (bijective operations fed with 2600
random patterns). MixColumn and AddRoundKey
operations are mainly xor trees and should be very
easily tested too using random patterns issued from the
Sboxes.

Register R2

Cipher text

Key
Generation

Secret Key K

Plaintext

RKi

Control

Select

Register R1

Sub Bytes

Shift Row

Mix Column

Start

Last-round

Encryption

Round

Key

0 1

Round

Test

Figure 4: AES Algorithm (encryption)

As for the DES, in order to confirm this hypothesis

we have performed a fault simulation on the proposed
AES core sets in self-test mode. This experiment has
shown that all the faults have been tested after 210
encryptions (i.e. 2100 round cycles). This experiment
has been repeated with different plaintexts and secret
keys as starting points. We obtained test sequences
ranging from 2100 to 2500 patterns for 100% fault
coverage, as expected from the equation (1).

From a practical point of view, 2600 round cycles in
self-test mode should be sufficient to test the whole
structure with a confidence level of 99%.

5. Conclusions

In the context of secure circuits, BIST approaches
appear as good alternatives since they do not rely on
visible scan chains. In this paper, a generic BIST
solution for cryptographic devices is presented. The
basic principle is to feed the device with its own output
and let the device run for a certain number of
encryptions, and then to compare the output of the final
encryption with a pre-computed signature.

We showed that the area overhead entailed by this
technique is negligible and the required test time is
very short, while guaranteeing 100% of fault coverage.

6. References

[1] Data Encryption Standard, Federal Information
Processing Standard (FIPS), Publication 46, National
Bureau of Standards, U.S. Departement of Commerce,
Washigton D.C., January 1977.

[2] Joan Daemen, Vincent Rijmen, “The Design of Rinjael,
AES - The Advanced Encryption Standard-”, Springer,
ISBN 3-540-42580-2

[3] NIST, “Recommendation for the Triple Data Encryption
Algorithm (TDEA) Block Cipher”, Special Publication
800-67.

[4] B. Yang, K. Wu, R. Karri, "Scan-based Side-Channel
Attack on Dedicated Hardware Implementations on
Data Encryption Standard", Proc. International Test
Conference (ITC 2004), pp 339-344.

[5] B.Yang, K.Wu, R.Karri, "Secure Scan: A Design-for-
Test Architecture for Crypto Chips", IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems TCAD 06, Oct. 2006, Vol 25, Issue: 10, pp
2287-2293.

[6] J. Lee, M. Tehranipoor, C. Patel, J. Plusquellic,
“Securing Scan Design Using Lock and Key
Technique”, Proc. IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT
2005), pp 51-62.

[7] D. Hely; F. Bancel; M.L. Flottes, B. Rouzeyre, “Secure
Scan Techniques: a Comparison”, IOLTS'06 12th
International On-Line Testing Symposium , 2006, pp.
119-124

[8] D. Hely, F.Bancel, M-L.Flottes, B. Rouzeyre, "Securing
Scan Control in Crypto Chips", IEEE Journal of
Electronic Testing: Theory and Applications 23, 5, oct.
2007 pp 457-464.

[9] D. Mukhopadhyay S. Banerjee D. RoyChowdhury B. B.
Bhattacharya, “CryptoScan: A Secured Scan Chain
Architecture”, 14th Asian Test Symposium (ATS 2005),
pp 348 – 353.

[10] A. Schubert, W. Anheier, "On random pattern testability
of Cryptographic VLSI cores", Journal of Electronic
Testing: Theory and Applications, Volume 16 , pp 185 –
192

[11] H. Feistel, "Cryptography and computer privacy''
Scientific American magazine, May 1973, pg:15-23

[12] NIST Special Publication 800-22, "A statistical test
suite for random and pseudorandom number generators
for cryptographic applications", (with revisions dated
May 15, 2001).

[13] Doulcier M., Flottes M.-L., Rouzeyre B., “AES-based
BIST: Self-test, Test Pattern Generation and Signature
Analysis”, DELTA'08: 4th IEEE International
Symposium on Electronic Design, Test & Applications,
(2008), pp. 314-321.

[14] http://www.synopsys.com
[15] www.austriamicrosystems.com
[16] S. Shioda, "Some upper and lower bounds on the

coupon collector problem", Journal of Computational
and Applied Mathematics, March 2007, Volume 200,
Issue 1, pp 154-167

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 6/6

