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Abstract 

 
Testability is a major issue, particularly for secure 

chips. Design-for-Testability techniques based on scan 
chains proved to be a highway for potential attacks. 
BIST approaches appear as good alternatives since 
they do not rely on visible scan chains. In this paper 
we propose a generic BIST solution for block-cipher 
devices. Taking advantage of the iterative process 
involved in such encryption algorithms which results in 
structural implementation consisting of (quasi) 
identical round transformations executed by the same 
piece of hardware, self-test procedures are easily set-
up. Compared to classical BIST solutions based on 
pseudo-random test pattern generation and output 
responses compactors, its main advantages are a 
negligible area overhead and a very short test time, 
while guaranteeing 100% of fault coverage. 

 
1. Introduction 
 
Public, industry, and state agencies rely on 

cryptography for the protection of information and 
communications in various domains of application 
such as pay TV, e-commerce, critical infrastructures, 
etc. At the core of the device offering cryptographic 
services is the cryptographic module. Crypto-cores 
execute cryptographic algorithms for providing 
services such as privacy, confidentiality, integrity, and 
authentication. Although cryptography is used to 
provide security, weaknesses such as weak crypto-
algorithms, poor design or physical failure of the 
hardware platform that implements the crypto-
algorithm can render the product insecure and place 
highly sensitive information at risk. Consequently, 
appropriate validation and testing of the crypto-
algorithm and corresponding crypto-core are essential 
to provide security assurance. 

United States National Institute for Standards and 
Technology (NIST) organized contest for selecting 

encryption standards. The Data Encryption Standard 
(DES) [1] was adopted as national standard in 1976, 
and the Advanced Encryption Standard (AES) [2] has 
been selected in October 2000. Since the hardware 
implementation of DES is not expensive, it is still used 
in many applications in the form of Triple DES for 
security improvement [3].  

Validation of such algorithms for efficient 
encryption is not discussed here. This paper aims at 
providing efficient test solution for the physical 
platform that implements the crypto-algorithm, i.e. the 
dedicated piece of hardware that executes the 
encryption. 

Independently of the intended function, defects 
created during the manufacturing process of integrated 
circuit (IC) are unavoidable and some number of ICs is 
expected to be faulty. Post-manufacturing testing is 
thus required to guarantee fault free products. It’s all 
the more important for applications requiring digital 
security because a faulty chip could fail to protect the 
secret data. 

IC testing consists of applying a set of test stimuli 
to the inputs of the device under test (a crypto core for 
instance) while analysing the output responses. 
Circuits that produce the expected responses pass the 
test and are considered to be fault-free. 

Due to the extremely large number of possible 
defect types and defect locations, fault models are used 
for computational efficiency during fault simulation 
and test stimuli generation. A combination of different 
fault models is generally used in the evaluation of 
testing approaches; among them the stuck-at fault 
model remains inescapable. 

Detection of such faults generally requires test-
oriented design methodology that aim to facilitate 
generation of proper test stimuli. Scan design is the 
most widely used structured Design-for-Testability 
(DfT) methodology. While it greatly facilitates the test 
of the IC and minimizes the probability to deliver 
faulty chips, it compromises the security of the system 
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since it provides facilities for controlling or observing 
sensitive data. Scan based attacks have been 
demonstrated in [4] (DES) and [5] (AES). 
Countermeasure such as secure scan design 
methodologies detailed in [5][6][7][8][9] prevent 
abusive usage of the scan facility but requires extra 
area and design efforts. 

Conversely, the Built-In Self-Test (BIST) approach 
does not require visible scan chains. The test patterns 
are classically generated on chip by an additional Test 
Pattern Generator (TPG) and test responses are 
compacted into a signature before comparison with the 
pre-computed golden one with the help of a Signature 
Analyzer (SA). The result of the comparison is the 
only test output. This test strategy is a good alternative 
if it provides low area overhead and acceptable fault 
coverage. 

Note that apart from its recurrent cost, extra silicon 
area for BIST may in turn be subject to faults. As 
usual, additional hardware for BIST implementation 
must be kept as low as possible.  

Conversely to scan design relying on deterministic 
test sequences, BIST classically relies on pseudo-
random sequences due to the impossibility to store or 
generate deterministic sequences at low cost with built-
in hardware. 

However, pseudo-random testing is an efficient 
technique for crypto-cores [10]. High fault coverage 
can be achieved with short pseudo-random test 
sequences because traditional cryptographic operations 
(XOR, substitution, modulo, …) are easily tested with 
random data. Moreover, the inherent properties of 
these operations allow the propagation of random data 
through the circuit. 

In order to save TPG and SA related area 
overheads, we propose a BIST methodology 
specifically designed for block-cipher circuits. The 
proposed BIST technique incurs almost no area 
overhead. 

The paper is organized as follows: Section 2 
discusses inherent properties of cryptographic 
algorithms and it introduces the BIST approach. 
Section 3 describes the DES and the AES, while 
Section 4 presents experimental results. Eventually, 
Section 5 concludes this paper. 

 
2. Cryptography and testability 
 
The security provided by block cipher algorithms 

such as Data Encryption Standard (DES) and its 
successor the Advanced Encryption Standard (AES) 
relies on two main properties named "diffusion and 
confusion". Confusion refers to making the relationship 
between the key and the ciphertext as complex and 

involved as possible; diffusion refers to the property 
that redundancy in the statistics of the plaintext is 
"dissipated" in the statistics of the ciphertext. Those 
properties are supported by using a Feistel [11][1] 
network in the first case and by a substitution-
permutation network for the later one (see next 
sections). 

These two algorithms also have some common 
characteristics: 
• They are iterative algorithms. DES is composed of 

16 rounds while AES is made of 10 rounds. All 
rounds are identical i.e. the result of a round is used 
as the input of the next round. Since the rounds are 
identical, their hardware implementations typically 
consist of a single round and a feedback loop. 

• Ciphering and deciphering algorithms are almost 
identical. 

• Since block ciphering is a bijective operation (one-
to-one mapping), each round is a bijective 
operation too (on a set of 264 elements for DES, on 
a set of and 2128 elements for AES). 
 

The diffusion property is a very interesting feature 
with regard to the test of their hardware 
implementation: 
• It implies that every input bit of a round influences 

many output bits, i.e. every input line of a round is 
in the logic cone of many output bits. In other 
words, an error caused by a fault in the body of the 
round is very likely to propagate to the output. 
Thus, the circuit is very observable. 

• Moreover, since rounds are bijective, the input 
logic cone of every output contains many inputs. In 
other words, each fault is highly controllable.  

It can be concluded that the circuits are highly testable 
by nature.  

 

Thus, for this kind of circuit, we propose the 
following self-test procedure: 

1. Encrypt an initial message M0 into M1=E(M0) 
2. Repeat n times : Mi+1 = E(Mi) 
3. Compare the final cipher Mn with the expected 

one E(E(E(…..E(M)…)). If they differ, the 
circuit is faulty otherwise it is correct. 

 

In other words, the result of an encryption is used 
as the next test vector. It should be noticed than for  
n encryptions, the main part of the circuit under test 
(i.e. the hardware implementation of the round) 
receives R test vectors, being R the number of 
iterations of the concerned algorithm (R=10 for the 
AES, R=16 for the DES). 

We investigate now whether this procedure leads to 
the application of n×R distinct test vectors.  

To our knowledge, there is no published general 
result about the length of the cycles on the output state 
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graph for either algorithm. Nevertheless, we conjecture 
that the length k of such a cycle (i.e. Mi+k = Mi) is quite 
large. Since the support set is very large (264 or 2128), 
and the encryption is bijective, these two algorithms 
can be considered as random permutations. As a 
consequence, the probability distribution function is 
flat. It can be computed that the expected cycle length 
is 264/2 for DES and 2128/2 for AES. Thus the 
probability that the output states fail in a loop is very 
small for moderate values of n. In practice (see section 
5) we never observed such cycles. 

To resume, whatever the initial message M0 and the 
secret key (except weak keys of DES), the actual 
length of the test sequence will be n×R. 

Finally, concerning test response comparison, due 
to the diffusion property and to the size of the support 
sets, the fault masking phenomenon is very unlikely to 
happen. That is, there are very few chances that in the 
presence of a fault the final signature equals to the 
correct one (and again we never noticed this 
phenomenon). 

 
3. Symmetric encryption algorithms 
 
In this section we describe the characteristics of 

two considered algorithms Data Encryption Standard 
(DES) and Advanced Encryption Standard (AES). 

 
3.1. Data Encryption Standard (DES) 
The Data Encryption Standard (DES) has been 

selected as an official Federal Information Processing 
Standard (FIPS) for the United States in 1976. DES is 
a block cipher, with a block size of 64 bits and a key of 
64 bits. However, only 56 bits of the key are actually 
used by the algorithm, while the other 8 bits are used 
for checking parity, and are thereafter discarded.  

The algorithm's overall structure is shown in Figure 
1.a: There are 16 identical stages of processing, called 
rounds. There are also an initial and a final 
permutation, called IP and FP, which are inverses (i.e., 
IP(x) = FP-1(x)).  

In each round, the block is divided into two 32-bit 
halves and processed alternately. This crossing scheme 
is known as the Feistel scheme [11]. The F-function 
scrambles half a block together with some of the key. 
The output from the F-function is then combined with 
the other half of the block, and the halves are swapped 
before the next round. After the final round, the halves 
are not swapped; this is a feature of the Feistel 
structure which makes encryption and decryption 
similar processes. 

The F-function, depicted in Figure 1.b, operates on 
half a block (32 bits) at a time and consists of four 
stages: 

• Expansion: the 32-bit half-block is expanded to 48 
bits using the expansion permutation, denoted E in 
the diagram, by duplicating some of the bits; 

• Key mixing:  the result is combined with a subkey 
using an XOR operation. Sixteen 48-bit subkeys 
(one for each round) are derived from the main key 
using the key schedule (described below); 

• Substitution: after mixing in the subkey, the block 
is divided into eight 6-bit pieces before processing 
by the S-boxes, or substitution boxes. Each of the 
eight S-boxes replaces its six input bits with four 
output bits according to a non-linear 
transformation, provided in the form of a lookup 
table; 

• Permutation: finally, the 32 outputs from the S-
boxes are rearranged according to a fixed 
permutation, the P-box.  
 
In order to generate the round keys, the 56 bits of 

the original key are divided into two 28-bit halves; 
each half is thereafter treated separately. In successive 
rounds, both halves are rotated left by one or two bits 
(specified for each round), and then 48 subkey bits are 
selected: 24 bits from the left half, and 24 from the 
right.  

 

(a) Overall structure of DES (b) Function F  
Figure 1: DES Algorithm 

 
3.2. Advanced Encryption Standard (AES) 
 
AES [2] is a block cipher adopted as an encryption 

standard by the U.S. government. AES began 
immediately to replace the Data Encryption Standard 
(DES, used since 1976) for the reason that it 
outperforms in long-term security thanks to, among 
other things, larger key sizes (128, 192, or 256 bits). 

Another major advantage of AES is its efficient 
implementation on various platforms. It is suitable for 
small 8-bit microprocessor platforms, common 32-bit 
processors, and dedicated hardware implementations 
that can reach throughput rates in the gigabit range.  
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The AES algorithm’s internal operations are 
performed on a two dimensional array of bytes called 
State. For sake of simplicity, we focus on key length 
equal to 128 bits. The State consists of 4 rows of bytes 
and each row has Nb=4 bytes. Each byte is denoted by 
Si,j (0 ≤ i < 4, 0 ≤ j < Nb) . The four bytes in each 
column of the State array form a 32-bit word, with the 
row number as the index for the four bytes in each 
word. The 128-bit block can be expressed as 16 bytes: 
in0, in1, in2… in15. Encryption and decryption processes 
are performed on the State, at the end of which the 
final value is mapped to the output bytes array out0, 
out1, out2, … out15. 

The AES algorithm is an iterative algorithm 
composed of 10 rounds. At the start of encryption, 
input is copied to the State array. After the initial secret 
key addition (roundkey(0)), the first 9 rounds are 
identical, with small difference in the final round. As 
illustrated in Figure 2, each of the first 9 rounds 
consists of 4 transformations: SubBytes, ShiftRows, 
MixColumns and AddRoundKey. The final round 
excludes the MixColumns transformation.  

The encryption scheme in Figure 1 can be inverted 
to get a straightforward structure for decryption. 

 
SubBytes Transformation 
The SubBytes transformation is a non-linear byte 

substitution that operates independently on each byte 
of the State using a substitution table (S-Box). This S-
Box is constructed by composing two transformations: 
1. Take the multiplicative inverse in the finite field 

GF(28); the element (00000000)2 is mapped to 
itself; 

2. Apply the following affine transformation (over 
GF(2)): 

iiiiiii cbbbbbb ⊕⊕⊕⊕⊕= ++++ 8mod)7(8mod)6(8mod)5(8mod)4(
'  

for 0 ≤ i < 8, where bi is the ith bit of the byte, and ci 
is the ith bit of a byte c whose value is fixed and is 
equal to {01100011}.  
This transformation can be pre-calculated for each 

possible input value since it works on a single byte, 
therefore there are only 256 values. S-Boxes can be 
implemented either as a ROM or as combinational 
logic. 

 
ShiftRows Transformation 
In this transformation, the bytes in the first row of 

the State do not change. The second, third, and fourth 
rows shift cyclically to the left one byte, two bytes, and 
three bytes, respectively. 

 

 
Figure 2: AES Algorithm (encryption) 

 
MixColumns Transformation 
The MixColumns transformation is performed on 

the State array column-by-column. Each column is 
considered as a four-term polynomial over GF(28) and 
multiplied by a(x) modulo x4 + 1, where:  

a(x) =  (00000011)2 x3 + (00000001)2 x2 +  
(00000001)2 x + (00000010)2 

 
AddRoundKey Transformation 
In AddRoundKey transformation, a roundkey is 

added to the State array by bitwise XOR operation. 
Each roundkey consists of 16 words generated from 
Key Expansion described below. 

 
Key Expansion 
The key expansion routine, as part of the overall 

AES algorithm, takes the input secret key of 128 bits. 
The output is an expanded key of 11*128 bits, i.e., the 
expanded key is composed of the secret key and 10 
roundkeys, one for each round. Details of the algorithm 
that allows determining the value of each roundkey are 
given in [2]. 

 

4. Testability Analysis  
 

In the following two sub-sections we provide some 
results related to the area overhead and the fault 
coverage for the self-test scheme, applied to the DES 
and the AES. The two architectures have been 
described in VHDL and synthesized using Synopsys 
Design Compiler [14] using a 350nm CMOS library 
provided by AMS [15].  

In both cases we have studied a theoretical approach 
to pre-calculate the number of encryptions needed to 
reach 100% of fault coverage. We considered the 
following aspects: 
1. the stream generated by a crypto algorithm when 

the input is fed by its output can be considered as 

Plaintext (128 bits)

Ciphertext (128 bits)

roundkey(0)

for i=1 to 9

SubBytes

ShiftRows

MixColumns

roundkey(i)

SubBytes

ShiftRows

roundkey(10)
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random. Strong randomness is an inherent feature 
of crypto algorithms. This property has been 
confirmed using the NIST statistical tests [12]. In 
both cases the bit streams passed the 15 
randomness test [13]; 

2. substitution boxes represent the biggest part of the 
device, and their inputs are independently fed by a 
sub-part of the input. We can therefore assume that 
they are fed by a random stream; 

3. each substitution box needs N deterministic 
patterns to be fully tested and it receives one 
pattern every clock cycle; 

4. we assume that test patterns able to test faults in the 
Sbox are also able to test faults in the remaining 
parts of the circuit (see 5.1 and 5.2 for details on 
the particular architecture). 

 
All these points allow us to estimate the number of 

clock cycles (and therefore the number of encryptions) 
required to fully test the circuit using the formula that 
gives the minimal-length random sequence that would 
include N patterns, having probability p to appear, with 
a given confidence level [13]: 

[ ] ( )n
k

1i

1i ip1
i
k

1)(1nXP −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=≤ ∑

=

+  (1) 

4.1 DES Hardware Implementation 
 

The architecture of the Self-Test approach for DES 
is depicted in Figure 3. The area overhead of the 
proposed approach is equal to 3,58%, corresponding to 
the initial 64-bits multiplexer and some additional 
logic for the control unit. 

In order to determine the number of clock cycles 
required to fully test the circuit we applied the equation 
(1). In particular, we considered a confidence level of 
99% for a sequence of k=64 patterns (i.e., the 
exhaustive set of input pattern for the Sbox), where 
each pattern has the same probability to appear 
(p=1/64). From this equation it comes that the length of 
a random sequence that contains each necessary vector 
with a confidence level of 99% is n=540 patterns. 

According to the implementation of the Sboxes, and 
in particular based on the actual number of 
deterministic patterns k (≤64) required to fully test the 
Sbox, the length of the test procedure can vary from 
440 clock cycles (28 encryptions, being each 
encryption composed of 16 clock cycles) to 540 cycles 
(34 encryptions). 

Concerning the other parts of the DES, they are 
mainly xor operations and they should be very easily 
tested using the same random patterns issued from the 
Sboxes. 

 Experimental results confirmed this result. We fault 
simulated the DES with several keys and initial input 

messages. It comes that after 21 encryptions (i.e. 336 
clock cycles) the circuit is fully tested. 

 

Register R2

Cipher text

Register R1

Key 
Generation

Control

E

SBoxes

P

Start

Test

FP

IP

Plaintext

32 32

64

 
Figure 3: AES Algorithm (encryption) 

 
 

4.2 AES Hardware Implementation 
 

The architecture of the Self-Test approach for AES 
is depicted in Figure 4. The area overhead of the 
proposed approach is equal to 2,13%. 

Regarding the testability and the number of 
encryptions required to reach 100% of fault coverage, 
we computed the minimal-length random sequence 
(with a confidence level of 99%) that would include 
k=256 patterns (i.e., the exhaustive set of input pattern 
for the Sbox), where p is equal in this case to 1/28 
(since the Sbox operates on 8 bits). From this equation 
it comes that the minimal random sequence length is 
n=2593 patterns.  

The same experiment have been performed for 
various implementations of the Sboxes and thus for 
different minimal deterministic test sets. In any case, 
the theoretical minimal length of the random sequence 
for including the targeted deterministic patterns ranges 
from 2400 to 2593 patterns. 

Concerning the other operations of the AES, 
ShitRow function requires only wires for its 
implementation and is tested when every bit of this 
interconnection structure has been set to both “0” and 
“1” (under the assumption of stuck-at fault model). 
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This should be easily achieved with the patterns issued 
from the Sboxes (bijective operations fed with 2600 
random patterns). MixColumn and AddRoundKey 
operations are mainly xor trees and should be very 
easily tested too using random patterns issued from the 
Sboxes. 
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Secret Key K

Plaintext

RKi

Control

Select

Register R1

Sub Bytes

Shift Row

Mix Column

Start

Last-round

Encryption

Round

Key

0 1

Round

Test

 
Figure 4: AES Algorithm (encryption) 

 
As for the DES, in order to confirm this hypothesis 

we have performed a fault simulation on the proposed 
AES core sets in self-test mode. This experiment has 
shown that all the faults have been tested after 210 
encryptions (i.e. 2100 round cycles). This experiment 
has been repeated with different plaintexts and secret 
keys as starting points. We obtained test sequences 
ranging from 2100 to 2500 patterns for 100% fault 
coverage, as expected from the equation (1).  

From a practical point of view, 2600 round cycles in 
self-test mode should be sufficient to test the whole 
structure with a confidence level of 99%. 

 

5. Conclusions 
 

In the context of secure circuits, BIST approaches 
appear as good alternatives since they do not rely on 
visible scan chains. In this paper, a generic BIST 
solution for cryptographic devices is presented. The 
basic principle is to feed the device with its own output 
and let the device run for a certain number of 
encryptions, and then to compare the output of the final 
encryption with a pre-computed signature. 

We showed that the area overhead entailed by this 
technique is negligible and the required test time is 
very short, while guaranteeing 100% of fault coverage.  
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