
Hardware Implementation of
Information Flow Signatures
Derived via Program Analysis

Paul Dabrowski, William Healey, Karthik Pattabiraman,
Shelley Chen, Zbigniew Kalbarczyk, Ravishankar Iyer

Center for Reliable and High-Performance Computing
University of Illinois, Urbana-Champaign



Karthik Pattabiraman
Hardware Implementation of
Information Flow Signatures 2

Motivation

Shrinking process technology  complexity
Insufficient validation  hardware design bugs
Intentional hardware bugs by malicious designer

Multi-core introduces many more entry points

Comprehensive technique to protect from a
broad class of memory/code vulnerabilities

Both known and unknown attacks
Protection even if attacker is inside system
Low area and performance overheads



Karthik Pattabiraman
Hardware Implementation of
Information Flow Signatures 3

This Paper: IFS Technique

Focuses on protecting the target of attack or
the critical data based on insn. dependencies

Protect from wide range of memory and code
corruption attacks (existing and future)

No assumptions on possible entry points
No assumptions on source of attack
No reliance on trustedness of operating system



Information Flow Signatures (IFS)

Programmer identifies critical data in application
based on knowledge of application semantics

Static Analysis: Extract inter-procedural
backward slice for critical variables

Identify instructions in backward slice (trusted)
Identify data objects for trusted instructions

Runtime Enforcement (Using both H/W + S/W)
Ensure that runtime behavior conforms to slice

Karthik Pattabiraman, UIUC
Ensuring Critical Data Integrity through

Information-flow Signatures 4



Karthik Pattabiraman
Hardware Implementation of
Information Flow Signatures 5

TI 1

Untrusted

Insn

Critical Var 1

Critical Var 2

Invariant : Only trusted instructions can

influence values of critical variables

Trusted Instructions Critical Variables

TI 2

TI 3

Checked for all instructions in program (using hardware)

Trusted Instructions: In

backward slice of critical variables

Level 1 Checking



Karthik Pattabiraman
Hardware Implementation of
Information Flow Signatures 6

TI 1

TI 2

Critical Var 1

Critical Var 2

TI 3

Invariant : Each trusted

instruction writes only to its

allowed target objects (according

to static analysis)

Checked only for trusted instructions in the program (using software)

Trusted Instructions: In

backward slice of  critical variables

Level 2 Checking



IFS Level 1 Check Implementation
(Hardware Enforcement)

I.dest
I.pc, Operands

Critical Data Non-critical Data

(Untrusted, Untrusted) Raise Alarm Allow

(Untrusted, Trusted) Raise Alarm Allow

(Trusted, Untrusted) Raise Alarm Raise Alarm

(Trusted, Trusted) Pass to Level 2 Pass to Level 2
7

 Every instruction and data item has a trusted bit associated with it

Trusted(I.dest)  Trusted(I.pc) && OperandsTrusted

OperandsTrusted  Trusted(I.op1) && ….  && Trusted(I.opN)



Karthik Pattabiraman
Hardware Implementation of
Information Flow Signatures 8

Fetch

Decode

Register

Execute

Memory

Exception

Writeback

I-Cache

D-Cache

FPU

Reg File

Leon 3 Pipeline

Leon 3 Processor

Debug

RSE

R
S

E
 I
n
te

rf
a
c
e

Information 

Flow 

Signatures

Module

ILHD

Module

Uninstantiated

Module

Controller

DMA Controller

L
e
o
n

3
S

y
s
te

m
B

u
s

Fetch

Decode

Register

Execute

Memory

Exception

Writeback

I-Cache

D-Cache

FPU

Reg File

Leon 3 Pipeline

Leon 3 Processor

Debug

RSE

R
S

E
 I
n
te

rf
a
c
e

Information 

Flow 

Signatures

Module

ILHD

Module

Uninstantiated

Module

Controller

DMA Controller

L
e
o
n

3
S

y
s
te

m
B

u
s

Hardware Implementation

CDTI

Trusted/Critical Bit Propagation

Fetch

Register

Store Check

CDTI Access

Check

Writeback

Register

File

R
S

E
  

In
te

rf
a

c
e

CHK 

handler

CDTI

Trusted/Critical Bit Propagation

Fetch

Register

Store Check

CDTI Access

Check

Writeback

Register

File

R
S

E
  

In
te

rf
a

c
e

CHK 

handler

Information
Flow

Signatures
Module



Karthik Pattabiraman
Hardware Implementation of
Information Flow Signatures 9

Results

Benchmark Power TSP

# Instructions
10388 5144

# Trusted Instructions
726 (7.0%) 118 (2.3%)

# Trusted/Critical
Memory Locations 30 1

Performance Overhead
1% 69%

Hardware Area overhead of 4.2%



Karthik Pattabiraman
Hardware Implementation of
Information Flow Signatures 10

Conclusion and Future Work

IFS Technique to protect critical data
Combination of hardware and software support
Hardware overhead < 5%

Performance overhead highly dependent on app

Future Work
Level 2 checks in hardware

Extend CDTI to work with virtual addressing
Extend to superscalar processors and multi-core



Karthik Pattabiraman
Hardware Implementation of
Information Flow Signatures 11

Related Work

Focus on defending against specific attacks
Stack smashing/Heap buffer overflows
System call based attacks

Cannot protect critical data once attacker
gains access to system (Insider Attacks)

Have prohibitive space and time overheads
or impose restrictions on source language


