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MotivationMotivation

Secure circuits testing

Scan path

• High  fault coverage

• Automatic generation of scan chains

• Easy test sequence generation

Vulnerability

• Control and observation of internal states of CUT

• => secret data retrieval

BIST

Scan based attack DES [Yan et al., ITC 04]

                               AES [Yan et al., IEEE TCAD 06]



LIRMM 3

MotivationMotivation

BIST

Reduced ATE cost

In-situ testing

Reduced external access

But

Circuitry overhead

•  test controller

•  pattern generator

•  signature analyzer…
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MotivationMotivation

Secure circuits contain a crypto core

E.g. Smart cards

Crypto core => Test resource
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Sensors MMU Interrupt UART RNG Timer

CPU Data/Address Bus
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OutlineOutline

AES & DES

Algorithm & architecture

Testability issues

AES/DES as pattern generators

AES/DES Self test

Optimisations

Conclusion
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IntroductionIntroduction

Symetric cryptography

DES

Adopted as standard in 1976

Data : 64 bits, Key : 56 bits

AES : Advanced Encryption Standard

Adopted as standard in 2001

Data: 128 bits, Key: 128 bits (192, 256)

Crypto algorithms basis: Diffusion &  Confusion

Plaintext Plaintext
Cipher

text

Ciphering Deciphering
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CharacteristicsCharacteristics

Diffusion and confusion

Confusion refers to making the relationship between the key and

the ciphertext as complex and involved as possible.

Diffusion refers to the property that redundancy in the statistics of

the plaintext is "dissipated" in the statistics of the ciphertext. For

diffusion to occur a change in a single bit of the plaintext should

result in changing the value of many ciphertext bits.

Iterative algorithms (rounds)

Each round is a "bijective" operation

7
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DES DES algorithm algorithm & architecture& architecture
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AES AES Algorithm Algorithm & architecture& architecture
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Cyphering Cyphering & & testabilitytestability

Diffusion

every input bit of a round influences many output bits, i.e. every

input line of a round is in the logic cone of many output bits.

an error caused by a fault in the body of the round is very likely to

propagate to the output.

 observability

Bijective

 controllability

Highly testable hardware implementations

=> random testing

10
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AES/DES as test pattern generatorAES/DES as test pattern generator

One test pattern = Intermediate round result of encryption
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AES/DES as TPG: randomness analysisAES/DES as TPG: randomness analysis

NIST Special Publication 800-
22

[NIST 800-22]

1 : Monobit Test

2 : Block Frequency Test

3 : Cumulative Sums Forward (Reverse)

4 : Runs Test

5 : Long Runs of Ones Test

6 : Rank Test

7 : Discrete Fourier Transform (Spectral) Test

8 : Universal Statistical Test

9 : Approximate Entropy Test

10 : Serial Test

11 : Linear Complexity Test

12 : Aperiodic Templates

13 : Periodic Template Test

14 : Random Excursion Test

15 : Random Excursion Variant Test

Statistical package of

15 tests has been

developed to test binary

sequences randomness
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1-round AES/DES : randomness1-round AES/DES : randomness
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1_round

AES

1_round

DES
LFSR

Frequency 0.71209 0.45847 0.00256

Blk-freq 0.47556 0.87065 0.44150

Runs 0.64156 0.18337 0.14362

Long Runs 0.28546 0.15829 0.96593

Rank 0.35722 0.24411 0.52660

DFT 0.03397 0.61040 0.81051

Aperiodic 0.50704 0.50541 0.49963

Periodic 0.08345 0.90055 0.39384

Univ.Maurer 0.44635 0.86625 0.24403

Lincomp 0.86761 0.88996 0

Serial 0.62350 0.42735 0.71383

Apen 0.44173 0.41358 0.63747

Cusum 0.73566 0.55751 0.00326

Random 0.41284 0.36790 0

Variant-R 0.49847 0.24177 0

Test passes if x > 0.1 

1.5 Mbit bitstream (leftmost bit)
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1-round AES/DES : randomness1-round AES/DES : randomness
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Proportion of bitstreams passing each NIST test

1-round AES 1-round DES

LFSR

randomness:

“1-round AES”  “1-round DES”  LFSR
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AES Self-testAES Self-test

Cycle 1
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AES Self-testAES Self-test

Signature

Key
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Is FC = 100% achievable ?

When ? 



LIRMM 17

AES Self-testAES Self-test

SubBytes

ShiftRows

AddKey

Register

MixColumns
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AES Self-testAES Self-test

SubBytes

ShiftRows

MixColumns

AddKey

Register

Sbox (8 bits  8 bits)

Implementations

• ROM => 256 patterns

• Glue logic => 200 ... 220 patterns

• Actually 203 patterns
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AES Self-testAES Self-test

SubBytes

ShiftRows

AddKey

Register

One Sbox (8 bits  8 bits)

• Glue logic => 203 patterns

• 203 responses

MixColumns (Exors) - Propagation of Sboxes errors

- Faults in Mixcolumn, Addkey, Register are

tested by the 203 responses
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AES Self-testAES Self-test

How many random patterns are needed to get those 203 deterministic

patterns? “The Coupon Collector Problem”

Sbox implementation:

 #test vectors  {200,...,256} => T  {2520,...,2590}
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AES Self-testAES Self-test

“Pseudo” Fault Simulation

Result :

Fault coverage: 100% after 2534 cycles

Test time reduction: 2400 cycles (with several keys, several

plaintexts)

Specific plaintext, specific key for minimal test time ?
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DES Self-testDES Self-test
22

Permutation

Sbox

6

4

Sbox

6

4

6

4

Sbox

6

4

Sbox

6

4

Sbox

6

4

Sbox

6

4

Sbox

6

4

Sbox

32 bits

Expansion

32 bits

Right bits

Left bits

Key



LIRMM

DES Self-testDES Self-test
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Actually 64 patterns

- Propagation of Sboxes errors

- Faults in Addkey, Permutation, Expansion

& Register are tested by the 64 responses

Sbox
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DES DES random sequence lengthrandom sequence length
24
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34 encryptions

Results : 100% FC after 24 encryptions (Data path and control)
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OptimisationOptimisation

Speeding up self-test of AES

2500 cycles for 256 test patterns

Feed-back on Sbox

• 5 cycles in state graph =>

• Add a (simple) feed-back function for traversing all 256 states

g = exor (01110110)  5 inverters

25

SBox g

Length States
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OptimisationOptimisation

2 steps procedure

test of Sboxes: 256 cycles (vs 2400)

test of remaining logic: 16 cycles

Area overhead : 1%

26
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ConclusionConclusion

AES/DES as TPG
Randomness: better than LFSRs

Self Testability
AES: 2400 encryption rounds (of a single message)

DES: 540 encryption rounds (of a single message)

Suitable technique for other ciphering circuits (IDEA, Fox, Blowfish, ...)

No area overhead

No impact on performance

No impact on security

ROM RAM E_PROM AES RSA CRC

Sensors MMU Interrupt UART RNG Timer

CPU Data/Address Bus
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Statistical tests NISTStatistical tests NIST
-Monobit Test: determine whether the number of ones and zeros in a sequence are approximately the same as
would be expected for a truly random sequence.

- Block Frequency Test: determine whether the number of ones and zeros in each of M non-overlapping blocks
created from a sequence appear to have a random distribution.

- Cumulative Sums Forward (Reverse) Test: determine whether the sum of the partial sequences occurring in
the tested sequence is too large or too small.

- Runs Test: determine whether the number of runs of ones and zeros of various lengths is as expected for a
random sequence. In particular, this test determines whether the oscillation between such substrings is too fast or
too slow.

- Long Runs of Ones Test: determine whether the longest run of ones within the tested sequence is consistent
with the longest run of ones that would be expected in a random sequence.

- Rank Test: check for linear dependence among fixed length substrings of the original sequence.

- Discrete Fourier Transform (Spectral) Test: detect periodic features (i.e., repetitive patterns that are near each
other) in the tested sequence that would indicate a deviation from the assumption of randomness.

- Aperiodic Templates Test: reject sequences that exhibit too many occurrences of a given non-periodic
(aperiodic) pattern.

- Periodic Template Test: reject sequences that show deviations from the expected number of runs of ones of a
given length.

- Universal Statistical Test: detect whether or not the sequence can be significantly compressed without loss of
information. A compressible sequence is considered to be nonrandom.

- Approximate Entropy Test: compare the frequency of overlapping blocks of two consecutive/adjacent lengths
(m and m+1) against the expected result for a normally distributed sequence.

- Random Excursion Test: determine if the number of visits to a state within a random walk exceeds what one
would expect for a random sequence.

- Random Excursion Variant Test: detect deviations from the distribution of the number of visits of a random walk
to a certain state.

- Serial Test: determine whether the number of occurrences of m-bit overlapping patterns is approximately the
same as would be expected for a random sequence.

- Linear Complexity Test: determine whether or not the sequence is complex enough to be considered random.


