

Quantum Wireless Intrusion Detection Mechanism

Tien-Sheng Lin^{1,2}, I-Ming Tsai¹, and Sy-Yen Kuo¹

- 1.Department of Electric Engineering, National Taiwan University, Taipei, Taiwan
- 2. Department of International Business Management, Lan Yang Institute of Technology, ILan, Taiwan

Outline

- Quantum qubits
- The BB84 protocol
- The topology
- Quantum sharing table
- Quantum detection circuit
- Conclusions

Superposition and Entanglement

$$|\psi\rangle$$
=a $|0\rangle$ +b $|1\rangle$

- ♦ Where |0⟩ and |1⟩ are two quantum states
- Where a and b are complex numbers, and |a|²+|b|²=1

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

$$|\psi\rangle = a|00\rangle + b|11\rangle$$

$$|0\rangle$$

The BB84 Protocol

The BB84 Protocol

- 1.Alice sends Bob a stream of photons which have been randomly polarized to one of four states (0⁰, 45⁰, 90⁰, 135⁰)
- 2.Bob measures the photons in a random sequence of bases
- 3.Alice and Bob publicly announces the sequence of bases they used
- 4.Alice and Bob discard the results that have been measured using different bases, the results left can be used to derive a secret key.

The BB84 Protocol

Indirect Communication

Electrical Engineering National Taiwan University

Quantum Sharing Table

$ \psi_{123}\rangle$	Bases	$ \psi_{ m c} angle$	$ \psi_{t}\rangle$	CX ₁	CX ₂	$R(\theta_1)$	$R(\theta_2)$
000⟩	$b_1b_1b_3$	z->	y⁻⟩	$C\sigma_{Z}$	$C\sigma_{x}$	R(90°)	R(30°)
001⟩	$b_2b_1b_3$	Z ->	y->	$C\sigma_{x}$	$C\sigma_{y}$	R(60°)	R(90°)
010⟩	$b_1b_1b_1$	Z ->	$ z^+\rangle$	СН	$C\sigma_{x}$	R(90°)	R(30°)
011⟩	$b_{2}b_{2}b_{3}$	X+>	y->	$C\sigma_{y}$	$C\sigma_{y}$	R(60°)	R(60°)
100⟩	$b_3b_1b_2$	Z ->	x ->	Cσ _z	$C\sigma_{x}$	R(90°)	R(45 ⁰)
101⟩	$b_{2}b_{2}b_{2}$	x ->	X +>	СН	$C\sigma_{x}$	R(80°)	R(50°)
110⟩	$b_3b_3b_1$	y+>	Z ->	$C\sigma_{x}$	СН	R(60°)	R(40°)
111>	$b_1b_2b_2$	x ->	X +>	СН	$C\sigma_{y}$	R(90°)	R(90°)

Quantum Detection Circuit

Alice

Candy

David

Bob

Electrical Engineering

The procedure

- First, quantum information: $|\psi_{xyz}\rangle \& |\psi_{123}\rangle$
- Second, quantum information: $CX_2&R(\theta_2)$ and the acknowledge
- Third, quantum information: $CX_1&R(\theta_1)$ and the acknowledge
- Fourth, quantum information: the secure qubits, $|\psi_c\rangle \& |\psi_t\rangle$

Conclusions

- Quantum cryptography is unconditional security.
- Quantum sharing table can act as a secret quantum key.
- Quantum detection circuit can resist manin-the-middle attack.
- The detection circuit can reconstruct the original quantum states of the secure qubits.

Questions and Discussion

Three measurement ases: University Conjugate

$$b_1 = \{ |z^+\rangle = |0\rangle, |z^-\rangle = |1\rangle \}$$

$$b_2 = \{ |x^+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle), |x^-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \}$$

$$b_3 = \{ |y^+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + i|1\rangle), |y^-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - i|1\rangle) \}$$

Eve attacks

- A. The BB84 protocol: Based on the nocloning theorem, Eve can not know the measurement bases and measurement position
- B. The detection mechanism: Eve can not know the quantum states of the secure qubits and Bob can detect it.

Question and answer

- 1.What is the major difference between classical cryptography and quantum cryptography
- Quantum cryptography is the unconditionally security and classical cryptography is conditional security; The property of the quantum cryptography is based on the laws of the physics such as no-cloning theorem, uncertainly principle and quantum teleportation. The property of the classical cryptography is based on the computing power.

Question and answer

- The major difference between the technology of quantum superposition and the technology of quantum entangled particles.
- To generate, to distribute, to maintain multiple entanglement qubits is the problem.
- The reliability of the quantum computing
- The reliability of the quantum communication

Cloning Attack

• If the qubit can be cloned, the security would be compromised.

• However, it is impossible to exactly copy an unknown quantum state.

Single Qubit

• A single qubit can be modeled by

$$|\psi\rangle = c_0|0\rangle + c_1|1\rangle$$
 where $c_0, c_1 \in \mathcal{C}$, and $|c_0|^2 + |c_1|^2 = 1$.

- In column matrix form : $|\psi
 angle = \left(egin{array}{c} c_0 \ c_1 \end{array}
 ight)$
- Principle of superposition
- Probability amplitude

More on Entanglement

• Spooky action-at-a-distance

$$\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

• Faster than light communication?

Teleportation

$$|\psi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
$$|\psi^{-}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$
$$|\phi^{+}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$$
$$|\phi^{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

