SER Characterization of an Advanced Network Processor using Accelerated Neutron Beam

Nelson Tam¹, ShiJie Wen², Noam Lewis³, Richard Wong², Armen Karapetov⁴, Oded Rozenstein⁴, Haim Boot³, Reuven Cohen³, Usama Nassir¹

¹Marvell Semiconductor, Inc., 5488 Marvell Lane, Santa Clara, Ca
²Cisco Systems, Inc., 170 West Tasman Drive, San Jose, Ca
³Marvell Israel Ltd, 6 Hamada Street, Mordot HaCarmel Industrial Park, Yokneam, Israel
⁴EZchip Technologies Ltd., 1 Hatamar Street, Yokneam, Israel

June 27th, 2008

WDSN 2008
Agenda

- Motivation
- 98NX3C2 SER Analysis
- ANITA Set Up at TSL
- Memory Test Data
- Application Test Results
 - MTTF
 - ECC Error
 - Parity Error
- Conclusion

June 27th, 2008
Motivation

- SER is now a major reliability requirement in Cisco’s component qualifications and for consideration in product/software designs.
- Developing highly Reliable & Available Systems (RAS) requires careful consideration of SEU occurrences and enhancements must be added during the product definition phase.
- Designing 98NX3C2, a wire speed network processor with high RAS capability, posted a significant challenge because of the distributed nature of the embedded memories used in facilitating the high speed packet processing.
- Collaborative effort is formed to establish a methodology to verify the SER of the final design experimentally.
98NX3C2 Features

• 10 Gigabit full-duplex processing
• Classification search engine
• Three 10-G traffic managers
• Twelve 1-G or a single 10-G Ethernet MACs with XAUI interfaces for network link
• Two 10-G Ethernet MACs with XAUI interfaces
• Two 1-G Ethernet & a single PCI Express external host interface
• Internal capabilities for OAM (operations & management) offload
• TSMC 90nm process in HFCBGA package
• ~10 Mbits of embedded SRAM
98NX3C2 SER Challenge

• Although high performance general microprocessors have much more memory than 98NX3C2
 – Dual-Core Intel® Itanium® Processor 9000 and 9100 series have up to 24MByte of cache
 – Most SRAM cells are in caches that are ECC or parity protected
• 98NX3C2 has only about 10 Mbits of SRAM
 – Over 140 different arrays
 – Sizes range from 256 bits to 2 Mbits
 – Medium size is 5 kbits
• Too costly to add protection and detection to all the memory arrays
 – ECC and parity protection are judicially added only to the critical arrays until the estimated SER becomes acceptable
98NX3C2 SER Estimation

- Only embedded memories are taken into account
 - SRAM FIT rate provided by TSMC
- Architectural derating is applied
- Random logics and analog components are not included
Accelerated Neutron Testing

- **Location**
 - Atmospheric-like Neutrons from thick Target (ANITA) facility in The Svedberg Laboratory (TSL) at Uppsala

- **Test Objectives**
 - Memory testing to verify intrinsic memory SER
 - Memory test algorithm targeting 2 Mbits of internal memories
 - Application tests to characterize MTTF
 - Search Random Tests (SRT) targeting specific interfaces
Board dimensions: 15” x 15”

CPU card dimensions: 3” x 6”
Experimental Set Up at TSL

- Test platform is mounted on a frame for better positional control
- Beam acceleration factor is 1.7×10^8
- Beam diameter is about 1.5cm
Memory Test Flow Chart

Input:
- Data pattern, mode
- Write delay, Read, delay

1. **Initialize**
2. **Write Delay**
3. **Write memory**
4. **Write Failure?**
 - Yes: **Log Error**
 - No: **Write all lines?**
 - Yes: **Separate write**
 - No: **End**
5. **Read Delay**
6. **Read memory**
7. **Read Error?**
 - Yes: **Log Error**
 - No: **Read all lines?**
 - Yes: **Mode?**
 - Yes: **Multi-read**
 - No: **Single read**
 - No: **End**
Memory Test Data

- Each data point is one run where ~50 errors are captured
 - Memory test data in FIT/Mbit is normalized to TSMC SRAM data
- 98NX3C2 memory FIT rate is in good agreement to TSMC FIT rate, which are obtained from LANL
Application Mode Test Overviews

- Three pre-defined search random tests (SRT) which are taken from the functionality test suit
 - Packets are generated internally and routed via loopback with no need for external traffic generator
 - SearchMemoryTcam_SRT
 - StatisticsMemoryTcam_SRT
 - WideMemoryTcam_SRT
 - Packet rates are about 6 Gbps or 2.5M packets per sec
 - Each packet accesses different memories at least once and usually much more
 - Memory access is > 2.5M and < 25M access per sec
 - Frame memory (2Mb) buffers are 65-70% in use
 - Instruction memories (2Mb) are 80% in use (code space)
 - Rest of internal memories (5Mb) (TOP’s + TM) is 40-50% in use
 - Pass/Fail Criteria
 - Packet count
 - Specific events
• Only one SRT is used per test run
• Errors are recorded via a register polling program
 – 100ms sampling time, set to sample once every sec
• Test has init phase and execution phase
 – Duration of execution phase can be changed
 – At the end of execution phase, final check for that SRT is performed
• Based on the acceleration factor and the estimated FIT rate, the MTTF is expected to be about 4 a.u. in accelerated time
 – Used 1, 2, and 5 a.u. exposure times
 – Beam is turned on only during execution phase
 – 5 repetitions per condition were run in semi-random order
• Right censored data is fitted to an exponential distribution using maximum likelihood method.
 - Shortest MTTF is 4.44 a.u. from SearchMemory_SRT, which is very close to the predicted value from the SER analysis of 98NX3C2.

June 27th, 2008
ECC Incident Rate

- Based on amount of ECC protected memories, 950 errors is expected from the total application test exposure
- Average probability of ECC captured is 14%
- WMT_SRT has the highest %
- ECC reported from 3 different sources:
 - GENERAL_CTRL_IN_ARB_ECC_CNT
 - GENERAL_RX_FRAME_ARB_ECC_CNT
 - GENERAL_TX_FRAME_ARB_ECC_CNT
- Most common is 2 bits and some 5 bits are reported
 - Mixture of spatial and temporal effects
 - Interleaving effective

<table>
<thead>
<tr>
<th>Test</th>
<th>Single Bit ECC</th>
<th>% of ECC Recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>SearchMemoryTcam_SRT</td>
<td>34</td>
<td>11%</td>
</tr>
<tr>
<td>StatisticsMemory_SRT</td>
<td>4</td>
<td>1%</td>
</tr>
<tr>
<td>WideMemoryTcam_SRT</td>
<td>91</td>
<td>29%</td>
</tr>
</tbody>
</table>

Single-bit ECC Event Count

- SearchMemoryTcam_SRT
- StatisticsMemory_SRT
- WideMemoryTcam_SRT

June 27th, 2008
Parity Error Incident Rate

- 22 parity errors were recorded
 - 5 out of 9 parity protected arrays showed errors
- Expected number of parity errors is 272
- Some parity errors are not considered as critical failures because they are recoverable.

<table>
<thead>
<tr>
<th>Test</th>
<th>Parity Error Count</th>
<th>% of Parity Error Recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>SearchMemoryTcam_SRT</td>
<td>4</td>
<td>1.5%</td>
</tr>
<tr>
<td>StatisticsMemory_SRT</td>
<td>5</td>
<td>1.8%</td>
</tr>
<tr>
<td>WideMemoryTcam_SRT</td>
<td>13</td>
<td>4.8%</td>
</tr>
</tbody>
</table>
Conclusion

- 98NX3C2 application MTTF was characterized at ANITA with data polling and right censored data collection methodology
- Estimated FIT based on SRAM analysis is in agreement with experimental results
- Memory test program successfully validated SRAM FIT rate
- ECC error log shows that in the worst case, up to 30% of upset bits will be read by the application in the ECC memory arrays under test
- Parity error log shows that in the worst case, 5% of upset bits will be read by the application in the parity protected array under test
- SM_SRT is the least SER sensitive test and SMT_SRT is the most sensitive
- WMT_SRT shows the highest test coverage on the ECC and parity protected arrays.

June 27th, 2008
• Back Up
Memroy Tests – general

- Access to mem in lines, 64 byte each
- Access to total of 2Mbit (256KByte)
- Current and Voltage measurements are manual
- Timestamp accuracy = +/-2 seconds
- Logged:
 - Address location of error
 - Expected data
 - Received data
 - Time stamp
 - Counter of total errors