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Abstract. Automated test generation for digital systems 
encompasses three activities: selecting a description 
method, developing a fault model and generating tests to 
detect the faults covered by the fault model. The 
efficiency of test generation (quality, speed) is highly 
depending on the description method and fault models.  
As the complexity of digital systems continues to 
increase, the gate level test generation methods have 
become obsolete. Promising approaches are high-level 
methods. In this paper, a method for describing 
microprocessors as a special case of digital systems is 
explained and modeling faults with High-Level Decision 
Diagrams (HLDD) is presented. HLDDs serve as a basis 
for a general theory of test generation for mixed-level 
representations of systems, similarly as we have Boolean 
algebra for logic-level. HLDDs can be used for 
representing systems uniformly either at logic-level, high-
level or simultaneously at both levels. The fault model on 
HLDDs represents a generalization of the classical gate-
level stuck-at fault model to higher levels - the latter was 
defined for Boolean expressions whereas the former is 
defined for nodes in HLDDs having more general 
interpretation. 
 
1.  Introduction 
Rapid advances in deep submicron and nanometer 
technologies, as well as in design automation are enabling 
engineers to design more complex digital systems (DS) 
and driving them toward new design paradigms like 
System-on-Chip (SoC) and Network-on-Chip (NoC), 
ubiquitous and massively parallel computing [1, 2], 
resulting in very intensive research to develop new 
algorithms and methods for design and test of embedded 
systems based on microprocessors [3, 4]. With this 
increase in systems complexity the probability of failures 
will also grow and so does the importance of verification 
and test, which already is taking as much as 70 % of the 
overall design cost [5,6]. 

The efficiency of test generation (quality, speed) is 
highly depending on the description method used for 
representing the system and also on the fault models. 
Gate-level Automated Test Pattern Generators (ATPG) 
represent state-of-the-art [7-9]. The logic level approach 
is, however, time-consuming for using automated test 
generation in the case of complex systems like 
microprocessors [5]. Because of the increasing 

complexity of digital systems, high-level approaches have 
become more attractive [10-12].  

For high-level test generation for complex digital 
systems, different high-level functional fault models have 
been introduced. The main idea of the high-level fault 
modeling is to obtain an incorrect version of the system 
from the high-level description by introducing a fault into 
the description. This approach is called model 
perturbation [13]. The models can be “perturbed” in 
several ways, e.g. by truth-table modification, micro-
operation modification etc. In one or another way, this 
idea is implemented in different high-level fault  models 
for different classes of digital systems. In the case of 
microprocessors, individual functional fault models and 
corresponding test strategies have been developed for 
different function classes like register or instruction 
decoding, control, data storage, transfer or manipulation 
etc [14, 15].  

The main disadvantage of this approach is that only 
microprocessors represented by Instruction Set 
Architecture (ISA) descriptions are handled and the 
results obtained cannot be extended to cope with the 
general digital systems test generation problem.  

When using Register Transfer Level (RTL), a formal 
definition of an RTL statement is defined and 9 categories 
of functional faults for RTL statements are identified [16, 
17]. A lot of attention has been devoted to generating tests 
directly from descriptions in high-level languages [18-
20]. Some attempts to develop special functional fault 
models for different data-flow network units like 
decoders, multiplexers, memories, PLAs etc. are 
described in [21]. All the listed approaches lead to using 
different mathematics and procedures for each type of 
fault model. The diversity of fault types makes it difficult 
to develop uniform test generation algorithms with 
possibility to treat all faults by standard procedures as in 
the case of stuck-at faults at the gate-level approach. 
Automated high-level test program generation based on 
numerous different types of fault models will be more 
complicated compared to the case when only one generic 
fault model in a uniform system description is used. This 
is the reason why today still no commercial high-level 
automated test generation software tools exist for 
complex digital systems presented on the register transfer 
level such as microprocessors or signal processing 
processors or controllers. 
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The rest of the paper is organized as follows. Section 2 
gives an overview about the common ISA level fault 
models for microprocessors and RTL fault models for 
general digital systems. In Section 3 high-level decision 
diagrams are discussed, and in Section 4 it is shown how 
the high-level faults defined on HLDDs can cover the 
common high-level fault models for digital systems. 
Section 5 presents experimental results and Section 6 
concludes the paper. 

2. Overview of high-level fault models 

Fault models for microprocessors. In [21, 22] a fault 
model for various units of the data processing section and 
the control section of microprocessors was presented. 

 Faults affecting the operation of microprocessor can 
be divided into the following classes:  
• addressing faults affecting register decoding; 
• addressing faults of instruction decoding and -

sequencing functions; 
• faults in the data-storage function; 
• faults in the data-transfer function; 
• faults in the data-manipulation function. 

For multiplexers under a fault, for a given source 
address any of the following may happen: 
F1: no source is selected; 
F2: a wrong source is selected; 
F3: more than one source is selected and the multiplexer 

output is either a wired-AND or a wired-OR function 
of the sources, depending on the technology. 

For demultiplexers under a fault, for a given 
destination address: 
F4: no destination is selected; 
F5: instead of, or in addition to the selected correct 

destination, one or more other destinations are 
selected. 

An instruction I can be viewed as a sequence of 
microinstructions, where every microinstruction consists 
of  a set of microorders which are executed in parallel. 
Microorders represent elementary data-transfer and data 
manipulation operations.  

Addressing faults affecting the execution of an 
instruction may cause one or more of the following fault 
effects: 
F6: one or more microorders not activated by the 

microinstructions of I; 
F7: microorders are erroneously activated by the 

microinstructions of I; 
F8: a different set of microinstructions is activated 

instead of, or in addition to. 
F9: The data storage facility is usually implemented as a 

memory. Under a fault any of the following may 
happen to the memory cell array; 

F10: one or more cells are stuck at 0 or 1; 
F11: one or more cells fail to make a 0→1 or 1→0 

transitions; 
F12: two or more pairs of cells are coupled; by this we 

mean a transition from x to y in one cell of the pair, 
say cell i, changes the state of the other cell, say j, 
from x to y or from y to x, where x {0,1}, and 

xy = .  

The data-transfer function implements all the data 
transfers along the buses between the registers and 
functional units of a microprocessor. For buses under a 
fault: 
F12: one or more lines can be stuck at 0 or 1; 
F13: one or more lines may form a wired-OR or wired-

AND function due to shorts or spurious coupling; 
F14: data manipulation faults. 

In the case of the data processing functional units no 
specific model F14 has been proposed for 
microprocessors. It is assumed that a complete test set for 
data manipulation faults can be derived for the functional 
units by some other techniques. 

The main disadvantage of the described approach is 
that only microprocessors are handled and the fault 
classes defined cannot be extended to cover the general 
digital systems test problem. 

Fault models for register transfer level. RTL fault 
models are set up with respect to certain sets of functional 
faults considered.  The set of faults are derived from a 
fault analysis for all distinct RTL statements of the 
device-under-test. A formal definition of a RTL statement 
is defined as [13]: 

K: (T,C) Rd  ←  f(RS1, RS2,…, RSn),  → N, 

where  K  is the RTL statement label,  T  is the timing, 
and  C  is the logic  condition to execute this statement,  
Rd   is the destination register,  RSi  is the i-th source 
register,  f   is an operation on source registers,  ←  
represents data transfer, and  → N  represents a jump to 
statement  N.  Based on the above notation, nine 
categories of functional faults can be identified as 
follows: 
F15: label faults denoted by (K/K’), which means that the 

label K will be changed to K’ due to the low-level 
faults;  

F16: timing faults (T/T’); 
F17: logic condition faults (C/C’); 
F18: register decoding faults (Ri/Ri’); 
F19: function decoding faults (f/f’); 
F20: control faults (→ N/→ N’); 
F21: data storage faults ((Ri)/(Ri)’), which means that the 

content of the register R is changed from (R) to (R)’ 
due to the low-level faults; 

F22: data transfer faults (←/←’), which means that the 
fault occurs in the transfer path between the sources 
and the destination; 

F23: data manipulation (function execution) faults 
((f)/(f)’, which means the operation execution fault – 
the operation f is executed, but the result of the 
operation is wrong. 

The set of derived functional faults from F15 to F23 is 
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comprehensive because the internal functional behavior of 
any digital system can be described by a sequence of RTL 
statements.  

The diversity of fault types and the big number of 
described fault classes makes it difficult to develop 
uniform high-level test generation algorithms which treat 
all faults by standard procedures in the way stuck-at faults 
are treated at the gate-level.. Test generation based on a 
lot of different types of fault models will be more 
complicated compared to the case when only one generic 
fault model is used. Such a general and uniform fault 
model can be defined easily when representing a digital 
system by the high-level decision diagram model [23]. 
 
.3. High-Level Decision Diagrams and Systems 

Consider a subnetwork f of a digital sytem S as a function 
y=f(x) where y=(y1,…yn) and x=(x1,…xm) are vector 
variables. The function f is defined on X=X1×…×Xm  with 
values y ∈ Y = Y1×…×Yn, and both, the domain X and the 
range Y are finite sets of values. xi, i = 1,2,…m, are input 
or state variables of the component f, whereas yj , j = 
1,2,…n, are output or next state variables. The values of 
variables may be Boolean, Boolean vectors, integers. For 
representing functions y = f(x) the decision diagrams can 
be used which are defined as follows [11].  

Definition 1. A HLDD is a directed acyclic graph  
G=(M,Γ,x) where M is a set of nodes, Γ is a relation in M, 
and Γ(m)⊂M denotes the set of successor nodes of m∈M. 
The nodes m∈M are marked by labels x(m). The labels 
can be: variables xi, algebraic expressions of xi, or 
constants.  

. 
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Fig.1. High-Level DD for a RTL circuit 

For nonterminal nodes m, where Γ(m) ≠ ∅, an onto 
function exists between the values of x(m) and the 
successors me∈Γ(m) of m. By me we denote the successor 
of m for the value x(m)=e. The edge (m, me) which 
connects nodes m and me is called activated iff there 
exists an assignment z(m)=e. Activated edges which 
connect mi and mj make up an activated path l(mi,mj). An 
activated path l(m0,mT) from the initial node m0 to a 
terminal node mT is called full activated path. 

Definition 2. High-Level Decision Diagram 
Gy=(M,Γ,x) represents a function y = f(x) iff for each 
value x, a full path in Gy to a terminal node mT is 
activated, where x(mT) = y is valid. 

As an example, a subnetwork of a digital system and 
its DD are depicted in Fig. 1. Here, R1 and  R2 are 
registers (R2 is also output), M1, M2 and M3 are 
multiplexers, + and * denote adder and multiplier, IN is 
input bus, y1, y2, y3 and y4 serve as input control variables, 
and a,b,c,d,e denote internal buses. In the DD, the control 
variables y1, y2, y3 and y4 are labeling internal decision 
nodes of the DD with their values shown at edges. The 
terminal nodes are labeled by constant #0 (reset of R2), by 
word variables R1 and  R2 (data transfers to R2), and by 
expressions related to data manipulation operations of the 
network. By bold lines and colored nodes, a full activated 
path in the DD is shown from x(m0)=y4 to x(mT)=R1*R2, 
which corresponds to the pattern y4=2, y3=3, and y2=0. 
By colored boxes, the activated part of the network at this 
pattern is denoted. 

In general, a digital system can be partitioned into 
subnetworks where each subnetwork is represented by 
corresponding high-level DD . 

  

 I1:  MVI  A,D   A = IN  I6:   MOV  A,M   A = IN 
 I2:  MOV  R,A  R = A      I7:   ADD  R       A = A + R 
 I3:  MOV  M,R OUT = R    I8:   ORA  R   A = A ∨ R 
 I4:  MOV  M,A OUT = A    I9:   ANA  R   A = A ∧ R 
 I5:  MOV  R,M R = IN      I10: CMA  A    A = ¬ A 

 
Fig.2. Decision Diagrams for a microprocessor 

 
An example of the DD-model for the microprocessor 

in Fig.1 is shown in Fig.2. The model consists of three 
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DD-s GOUT, GR, and GA describing the output behavior, 
and the behaviors of registers R and A, respectively for all 
the 10 instructions. Here, R, and A denote an internal 
addressable register, and accumulator, respectively, IN, 
and OUT  denote the input and output busses with ports, 
respectively,  I serves as the instruction variable having 
values from 1 to 10, which correspond to the instructions  
I1, I2,… I10 , respectively.  The variable I is labeling the 
internal decision nodes of the DD with its values shown at 
edges. The terminal nodes are labeled by word variables 
or expressions. If in a graph Gy a path is activated by I = k  
to the terminal node labeled by x(mT), then it is modeling 
the behavior of the microprocessor at the instruction  Ik: y 
= x(mT).   

If the instructions of the microprocessors have a 
particular format with different fields then the instruction 
variable can be represented as a concatenation of the field 
variables e.g. as I = IOP.IA1.IA2 , where IOP is the code of 
the operation, and IA1, and IA2  denote the addresses of the 
first and second operands, respectively. In this case we 
can model the behaviour the microprocessor in a more 
detailed way introducing into the DD instead of the 
general instruction variable the field variables with less 
number of output edges.  

By the presented DD, the states of the microprocessor 
are calculated after each instruction cycle. To increase 
further the accuracy of the model, we can move from 
instruction level down to microinstruction level. In this 
case the next states are calculated after each micro-
instruction cycle. 

4. Fault Model on High-Level DDs 
Each path in an HLDD describes the behavior of the 
system in a specific mode of operation (working mode). 
The faults having effect on the behavior can be associated 
with nodes along the path. A fault causes incorrect 
leaving the path activated by a test.  

From this point of view the following abstract fault 
model for nodes m with node variables z(m) in HLDDs 
can be defined: 
D1: the output edge for x(m) = i of a node m is always 

activated; notation: x(m)/i; (like logic level stuck-at 
faults x/0 and x/1 for the line x); 

D2: the output edge for x(m) = i of a node m is broken; 
notation: x(m)/*; 

D3: instead of the given edge for x(m) = i of a node m, 
another edge for x(m) = j, or a set of edges { j } is 
activated; notation: x(m)/ i,{ j }. 

The fault model defined on HLDDs is directly related 
to the nodes m of HLDDs, and is an abstract one. It will 
have a semantical meaning only when the node has a 
particular physical interpretation. All the classical high-
level fault models described above can be covered by this 
uniform node fault model defined on HLDDs. 

In Table 1 the correspondence of the HLDD-based 
fault model to microprocessor fault classes is shown, 
illustrated also in Fig.3. 

Table 1. High-Level microprocessor faults 
Microprocessor faults DD faults 

F1, F4, F6 D1 Internal nodes 
F3, F7;    F5, F8 D2 Internal nodes 

F2;   F5, F8;    D3 Internal nodes 
F9-F14 D3 Terminal nodes 

RTL faults DD faults 
F15-F20 D1,D2,D3 Internal nodes 
F21-F23 D3 Terminal nodes 

The faults F1, F4 and F6 can be explained on DDs as 
the fault class D1 which describes missing activities as 
faulty behaviour. F3 and F7 refer to an erroneously 
activated operation in addition to the expected one, which 
corresponds to the fault class D2. F2 is directly covered 
by the fault class D3. F5 and F8 correspond both to D2 
and D3 whereas the faults F9 - F13 representing the 
register or bus faults are covered by D3 in terminal nodes.  
F14 is also covered by D3 in terminal nodes. Note that the 
faults F6 - F8 correspond to the micro-order level. 

 
 

 
Fig.3. Interpretation of the microprocessor faults on DDs 
 

Consider the classical fault model coverage by the 
DD-approach on the example of the test when instruction 
I7  (j=7) is carried out (bold activated path)  in Fig.3.  

The expected result is A=A’+R’ (the apostrophe means 
the previous state of a register). Denote the real result as 
A*. A fault is detected if  A ≠ A*. By such a test the 
following faults related to I7  (j=7) can be detected: D1, if 
A* = A’ (the faults F1, F4 or F5), and  D3, if e.g. A* = 
A´∨R´ (the fault  F2) or  if A* = A’ (the fault F5). The 
faults D2 for  j=7 (F3), if A´+R´ is always activated, can 
be detected by carrying out the instructions Ik, k ≠ 7. 

In Table 1 it is shown which fault models from F1 to 
F23 can be modelled at which type of nodes of DDs, 
either at internal or terminal ones.   

For example, since the internal nodes of the HLDD in 
Fig.1, labelled by yi can be interpreted either as timing or 
logic conditions (F16, F17), register decoding (F18), 
instruction decoding (F19) or control signals (F20), it is 
easy to see that all the fault classes from F16 to F20 can 
be modelled at the internal nodes of DDs independently 
of their functional meaning. The same can be said also 
about the fault class F15, because these faults can be also 
interpreted as decoding faults. The faults F9-F14 and F21-
F23 correspond to the fault in terminal nodes of DDs.  
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The correspondence of the faults of the terminal nodes 
of the HLDD in Fig.1 to the fault classes F21-F23 is 
shown in Table 2.  

The fault model defined on DDs can be regarded in a 
certain sense as a generalization of  the classical gate-
level stuck-at fault model for more higher level 
representations of digital systems than the logic level. 
When the stuck-at fault model is defined for the Boolean 
variables, the new fault model is defined for the nodes of 
DDs. The only difference is that when in the Boolean case 
the value of the variable can change because of the fault 
only between two values, either from 0 to 1 or from 1 to 
0, then in the general case there are much more 
possibilities for a faulty behavior of a node. 

 

Table 2. Fault classes of HLDD terminal node faults 
RTL faults DD faults 

F21 Register faults in R1 and R2 
F22 Bus faults for IN, R1, and R2 
F23 R1 + R2, IN + R2, R1 * R2, IN * R2 

 

5. Experimental results 
To compare the efficiency of the high-level and low level 
test generation, experiments were carried out with a 
restricted class of digital systems - with a benchmark 
family of n-bit simplified RISC processors [24].  

Table 3. Experiments for bottom-up test generation 

IS BW ATPG Time 
(s) 

Test 
length 

Opt. 
test 

length 

Faults Detec-
ted 

faults

Fault 
cover 
(%) 

4 4 HTPG 0.02 63 25 612 611 99.8 
  Syn. 0.21 30 25 596 595 99.8 

4 8 HTPG 0.02 63 29 1168 1167 99.9 
  Syn. 0.49 45 33 1168 1167 99.9 

4 16 HTPG 0.03 63 29 2240 2239 99.9 
  Syn. 1.16 63 36 2240 2239 99.9 

4 32 HTPG 0.07 63 29 4404 4401 99.9 
  Syn. 3.74 77 45 4404 4401 99.9 

8 4 HTPG 0.02 120 30 708 708 100 
  Syn. 0.19 45 25 708 708 100 

8 8 HTPG 0.05 120 30 1320 1320 100 
  Syn. 0.50 52 31 1232 1232 100 

8 16 HTPG 0.08 120 29 2540 2540 100 
  Syn. 1.25 61 41 2364 2364 100 

8 32 HTPG 0.10 120 30 5018 5018 100 
  Syn. 4.26 75 50 4676 4676 100 

16 4 HTPG 0.08 224 39 900 900 100 
  Syn. 0.29 46 32 855 855 100 

16 8 HTPG 0.10 224 43 1612 1612 100 
  Syn. 0.75 64 42 1531 1531 100 

16 16 HTPG 0.13 224 42 3016 3016 100 
  Syn. 1.86 73 48 2861 2861 100 

16 32 HTPG 0.15 224 42 5908 5908 100 
  Syn. 5.57 84 59 5607 5607 100 

The family consists of processors which vary in the 
instruction set (processors with 4, 8 and 16 instructions) 
and in the bitwidth (4, 8, 16 and 32-bit processors). The 

benchmark family was created by describing the high 
level behavior of processors in VHDL and by 
synthesizing the gate-level implementations with 
SYNOPSYS. Then HLDD-models were synthesized both 
for higher (instruction) level and lower (gate) level 
designs. The results of experiments carried out with 12 
different processors are depicted in Table 3.  

Here, the columns have the following meaning: IS - 
number of instructions, BW - bitwidth of the processor 
data word, ATPG - type of the test generator (as reference 
for comparison, the SYNOPSYS gate-level ATPG was 
used), processor time in seconds used for test generation, 
number of patterns generated by ATPG, number of 
patterns before and after optimization, total number of 
faults, number of faults detected, and the fault coverage. 
Comparison of the speed of both test generators is 
illustrated in Fig.4. 
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Figure 4. Comparison of test generation times. 

 

6. Conclusions 

The results of the paper can be formulated in the concise 
form as follows. Different fault models for different 
abstraction levels of digital systems can be replaced when 
using HLDDs by the uniform node fault model. By this 
technique, it is possible to represent groups of structural 
faults through groups of functional faults. As the result, 
the complexity of fault representation is reduced, and the 
fault simulation level (together with simulation speed) 
raised.  
Depending on the adequacy of representing the structure 
of the system, the fault model proposed for HLDDs can 
cover a wide class of structural and functional faults 
introduced for digital systems. The fault model on 
HLDDs can be regarded as a generalization of the 
classical gate-level stuck-at fault model for higher level 
representations of digital systems. The stuck-at fault 
model is defined for Boolean variables, whereas the 
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generalized new fault model is defined for the nodes of 
DDs. 
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