

Modeling Microprocessor Faults on High-Level Decision Diagrams

Raimund Ubar1, Jaan Raik1, Artur Jutman1, Maksim Jenihhin1, Martin Instenberg2, Heinz-Dietrich Wuttke2

Tallinn University of Technology, Estonia1, Ilmenau Technical University, Germany2

{raiub, jaan, artur, maksim}@pld.ttu.ee, martin.instenberg@stud.tu-ilmenau.de, dieter.wuttke@tu-ilmenau.de

Abstract. Automated test generation for digital systems
encompasses three activities: selecting a description
method, developing a fault model and generating tests to
detect the faults covered by the fault model. The
efficiency of test generation (quality, speed) is highly
depending on the description method and fault models.
As the complexity of digital systems continues to
increase, the gate level test generation methods have
become obsolete. Promising approaches are high-level
methods. In this paper, a method for describing
microprocessors as a special case of digital systems is
explained and modeling faults with High-Level Decision
Diagrams (HLDD) is presented. HLDDs serve as a basis
for a general theory of test generation for mixed-level
representations of systems, similarly as we have Boolean
algebra for logic-level. HLDDs can be used for
representing systems uniformly either at logic-level, high-
level or simultaneously at both levels. The fault model on
HLDDs represents a generalization of the classical gate-
level stuck-at fault model to higher levels - the latter was
defined for Boolean expressions whereas the former is
defined for nodes in HLDDs having more general
interpretation.

1. Introduction
Rapid advances in deep submicron and nanometer
technologies, as well as in design automation are enabling
engineers to design more complex digital systems (DS)
and driving them toward new design paradigms like
System-on-Chip (SoC) and Network-on-Chip (NoC),
ubiquitous and massively parallel computing [1, 2],
resulting in very intensive research to develop new
algorithms and methods for design and test of embedded
systems based on microprocessors [3, 4]. With this
increase in systems complexity the probability of failures
will also grow and so does the importance of verification
and test, which already is taking as much as 70 % of the
overall design cost [5,6].

The efficiency of test generation (quality, speed) is
highly depending on the description method used for
representing the system and also on the fault models.
Gate-level Automated Test Pattern Generators (ATPG)
represent state-of-the-art [7-9]. The logic level approach
is, however, time-consuming for using automated test
generation in the case of complex systems like
microprocessors [5]. Because of the increasing

complexity of digital systems, high-level approaches have
become more attractive [10-12].

For high-level test generation for complex digital
systems, different high-level functional fault models have
been introduced. The main idea of the high-level fault
modeling is to obtain an incorrect version of the system
from the high-level description by introducing a fault into
the description. This approach is called model
perturbation [13]. The models can be “perturbed” in
several ways, e.g. by truth-table modification, micro-
operation modification etc. In one or another way, this
idea is implemented in different high-level fault models
for different classes of digital systems. In the case of
microprocessors, individual functional fault models and
corresponding test strategies have been developed for
different function classes like register or instruction
decoding, control, data storage, transfer or manipulation
etc [14, 15].

The main disadvantage of this approach is that only
microprocessors represented by Instruction Set
Architecture (ISA) descriptions are handled and the
results obtained cannot be extended to cope with the
general digital systems test generation problem.

When using Register Transfer Level (RTL), a formal
definition of an RTL statement is defined and 9 categories
of functional faults for RTL statements are identified [16,
17]. A lot of attention has been devoted to generating tests
directly from descriptions in high-level languages [18-
20]. Some attempts to develop special functional fault
models for different data-flow network units like
decoders, multiplexers, memories, PLAs etc. are
described in [21]. All the listed approaches lead to using
different mathematics and procedures for each type of
fault model. The diversity of fault types makes it difficult
to develop uniform test generation algorithms with
possibility to treat all faults by standard procedures as in
the case of stuck-at faults at the gate-level approach.
Automated high-level test program generation based on
numerous different types of fault models will be more
complicated compared to the case when only one generic
fault model in a uniform system description is used. This
is the reason why today still no commercial high-level
automated test generation software tools exist for
complex digital systems presented on the register transfer
level such as microprocessors or signal processing
processors or controllers.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 1/6

The rest of the paper is organized as follows. Section 2
gives an overview about the common ISA level fault
models for microprocessors and RTL fault models for
general digital systems. In Section 3 high-level decision
diagrams are discussed, and in Section 4 it is shown how
the high-level faults defined on HLDDs can cover the
common high-level fault models for digital systems.
Section 5 presents experimental results and Section 6
concludes the paper.

2. Overview of high-level fault models

Fault models for microprocessors. In [21, 22] a fault
model for various units of the data processing section and
the control section of microprocessors was presented.

 Faults affecting the operation of microprocessor can
be divided into the following classes:
• addressing faults affecting register decoding;
• addressing faults of instruction decoding and -

sequencing functions;
• faults in the data-storage function;
• faults in the data-transfer function;
• faults in the data-manipulation function.

For multiplexers under a fault, for a given source
address any of the following may happen:
F1: no source is selected;
F2: a wrong source is selected;
F3: more than one source is selected and the multiplexer

output is either a wired-AND or a wired-OR function
of the sources, depending on the technology.

For demultiplexers under a fault, for a given
destination address:
F4: no destination is selected;
F5: instead of, or in addition to the selected correct

destination, one or more other destinations are
selected.

An instruction I can be viewed as a sequence of
microinstructions, where every microinstruction consists
of a set of microorders which are executed in parallel.
Microorders represent elementary data-transfer and data
manipulation operations.

Addressing faults affecting the execution of an
instruction may cause one or more of the following fault
effects:
F6: one or more microorders not activated by the

microinstructions of I;
F7: microorders are erroneously activated by the

microinstructions of I;
F8: a different set of microinstructions is activated

instead of, or in addition to.
F9: The data storage facility is usually implemented as a

memory. Under a fault any of the following may
happen to the memory cell array;

F10: one or more cells are stuck at 0 or 1;
F11: one or more cells fail to make a 0→1 or 1→0

transitions;
F12: two or more pairs of cells are coupled; by this we

mean a transition from x to y in one cell of the pair,
say cell i, changes the state of the other cell, say j,
from x to y or from y to x, where x {0,1}, and

xy = .

The data-transfer function implements all the data
transfers along the buses between the registers and
functional units of a microprocessor. For buses under a
fault:
F12: one or more lines can be stuck at 0 or 1;
F13: one or more lines may form a wired-OR or wired-

AND function due to shorts or spurious coupling;
F14: data manipulation faults.

In the case of the data processing functional units no
specific model F14 has been proposed for
microprocessors. It is assumed that a complete test set for
data manipulation faults can be derived for the functional
units by some other techniques.

The main disadvantage of the described approach is
that only microprocessors are handled and the fault
classes defined cannot be extended to cover the general
digital systems test problem.

Fault models for register transfer level. RTL fault
models are set up with respect to certain sets of functional
faults considered. The set of faults are derived from a
fault analysis for all distinct RTL statements of the
device-under-test. A formal definition of a RTL statement
is defined as [13]:

K: (T,C) Rd ← f(RS1, RS2,…, RSn), → N,

where K is the RTL statement label, T is the timing,
and C is the logic condition to execute this statement,
Rd is the destination register, RSi is the i-th source
register, f is an operation on source registers, ←
represents data transfer, and → N represents a jump to
statement N. Based on the above notation, nine
categories of functional faults can be identified as
follows:
F15: label faults denoted by (K/K’), which means that the

label K will be changed to K’ due to the low-level
faults;

F16: timing faults (T/T’);
F17: logic condition faults (C/C’);
F18: register decoding faults (Ri/Ri’);
F19: function decoding faults (f/f’);
F20: control faults (→ N/→ N’);
F21: data storage faults ((Ri)/(Ri)’), which means that the

content of the register R is changed from (R) to (R)’
due to the low-level faults;

F22: data transfer faults (←/←’), which means that the
fault occurs in the transfer path between the sources
and the destination;

F23: data manipulation (function execution) faults
((f)/(f)’, which means the operation execution fault –
the operation f is executed, but the result of the
operation is wrong.

The set of derived functional faults from F15 to F23 is

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 2/6

comprehensive because the internal functional behavior of
any digital system can be described by a sequence of RTL
statements.

The diversity of fault types and the big number of
described fault classes makes it difficult to develop
uniform high-level test generation algorithms which treat
all faults by standard procedures in the way stuck-at faults
are treated at the gate-level.. Test generation based on a
lot of different types of fault models will be more
complicated compared to the case when only one generic
fault model is used. Such a general and uniform fault
model can be defined easily when representing a digital
system by the high-level decision diagram model [23].

.3. High-Level Decision Diagrams and Systems

Consider a subnetwork f of a digital sytem S as a function
y=f(x) where y=(y1,…yn) and x=(x1,…xm) are vector
variables. The function f is defined on X=X1×…×Xm with
values y ∈ Y = Y1×…×Yn, and both, the domain X and the
range Y are finite sets of values. xi, i = 1,2,…m, are input
or state variables of the component f, whereas yj , j =
1,2,…n, are output or next state variables. The values of
variables may be Boolean, Boolean vectors, integers. For
representing functions y = f(x) the decision diagrams can
be used which are defined as follows [11].

Definition 1. A HLDD is a directed acyclic graph
G=(M,Γ,x) where M is a set of nodes, Γ is a relation in M,
and Γ(m)⊂M denotes the set of successor nodes of m∈M.
The nodes m∈M are marked by labels x(m). The labels
can be: variables xi, algebraic expressions of xi, or
constants.

.

R2M3

e
+M1

a

*M2

b

•

•

R1

IN •

•

•

c

d

y1 y2 y3 y4

y4

y3 y1 R1 + R2

IN + R2

R1* R2

IN* R2

y2

R2 0

1

2 0

1

0

1

0

1

#0

R2

IN

R1
2

3

Fig.1. High-Level DD for a RTL circuit

For nonterminal nodes m, where Γ(m) ≠ ∅, an onto
function exists between the values of x(m) and the
successors me∈Γ(m) of m. By me we denote the successor
of m for the value x(m)=e. The edge (m, me) which
connects nodes m and me is called activated iff there
exists an assignment z(m)=e. Activated edges which
connect mi and mj make up an activated path l(mi,mj). An
activated path l(m0,mT) from the initial node m0 to a
terminal node mT is called full activated path.

Definition 2. High-Level Decision Diagram
Gy=(M,Γ,x) represents a function y = f(x) iff for each
value x, a full path in Gy to a terminal node mT is
activated, where x(mT) = y is valid.

As an example, a subnetwork of a digital system and
its DD are depicted in Fig. 1. Here, R1 and R2 are
registers (R2 is also output), M1, M2 and M3 are
multiplexers, + and * denote adder and multiplier, IN is
input bus, y1, y2, y3 and y4 serve as input control variables,
and a,b,c,d,e denote internal buses. In the DD, the control
variables y1, y2, y3 and y4 are labeling internal decision
nodes of the DD with their values shown at edges. The
terminal nodes are labeled by constant #0 (reset of R2), by
word variables R1 and R2 (data transfers to R2), and by
expressions related to data manipulation operations of the
network. By bold lines and colored nodes, a full activated
path in the DD is shown from x(m0)=y4 to x(mT)=R1*R2,
which corresponds to the pattern y4=2, y3=3, and y2=0.
By colored boxes, the activated part of the network at this
pattern is denoted.

In general, a digital system can be partitioned into
subnetworks where each subnetwork is represented by
corresponding high-level DD .

 I1: MVI A,D A = IN I6: MOV A,M A = IN
 I2: MOV R,A R = A I7: ADD R A = A + R
 I3: MOV M,R OUT = R I8: ORA R A = A ∨ R
 I4: MOV M,A OUT = A I9: ANA R A = A ∧ R
 I5: MOV R,M R = IN I10: CMA A A = ¬ A

Fig.2. Decision Diagrams for a microprocessor

An example of the DD-model for the microprocessor

in Fig.1 is shown in Fig.2. The model consists of three

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 3/6

DD-s GOUT, GR, and GA describing the output behavior,
and the behaviors of registers R and A, respectively for all
the 10 instructions. Here, R, and A denote an internal
addressable register, and accumulator, respectively, IN,
and OUT denote the input and output busses with ports,
respectively, I serves as the instruction variable having
values from 1 to 10, which correspond to the instructions
I1, I2,… I10 , respectively. The variable I is labeling the
internal decision nodes of the DD with its values shown at
edges. The terminal nodes are labeled by word variables
or expressions. If in a graph Gy a path is activated by I = k
to the terminal node labeled by x(mT), then it is modeling
the behavior of the microprocessor at the instruction Ik: y
= x(mT).

If the instructions of the microprocessors have a
particular format with different fields then the instruction
variable can be represented as a concatenation of the field
variables e.g. as I = IOP.IA1.IA2 , where IOP is the code of
the operation, and IA1, and IA2 denote the addresses of the
first and second operands, respectively. In this case we
can model the behaviour the microprocessor in a more
detailed way introducing into the DD instead of the
general instruction variable the field variables with less
number of output edges.

By the presented DD, the states of the microprocessor
are calculated after each instruction cycle. To increase
further the accuracy of the model, we can move from
instruction level down to microinstruction level. In this
case the next states are calculated after each micro-
instruction cycle.

4. Fault Model on High-Level DDs
Each path in an HLDD describes the behavior of the
system in a specific mode of operation (working mode).
The faults having effect on the behavior can be associated
with nodes along the path. A fault causes incorrect
leaving the path activated by a test.

From this point of view the following abstract fault
model for nodes m with node variables z(m) in HLDDs
can be defined:
D1: the output edge for x(m) = i of a node m is always

activated; notation: x(m)/i; (like logic level stuck-at
faults x/0 and x/1 for the line x);

D2: the output edge for x(m) = i of a node m is broken;
notation: x(m)/*;

D3: instead of the given edge for x(m) = i of a node m,
another edge for x(m) = j, or a set of edges { j } is
activated; notation: x(m)/ i,{ j }.

The fault model defined on HLDDs is directly related
to the nodes m of HLDDs, and is an abstract one. It will
have a semantical meaning only when the node has a
particular physical interpretation. All the classical high-
level fault models described above can be covered by this
uniform node fault model defined on HLDDs.

In Table 1 the correspondence of the HLDD-based
fault model to microprocessor fault classes is shown,
illustrated also in Fig.3.

Table 1. High-Level microprocessor faults
Microprocessor faults DD faults

F1, F4, F6 D1 Internal nodes
F3, F7; F5, F8 D2 Internal nodes

F2; F5, F8; D3 Internal nodes
F9-F14 D3 Terminal nodes

RTL faults DD faults
F15-F20 D1,D2,D3 Internal nodes
F21-F23 D3 Terminal nodes

The faults F1, F4 and F6 can be explained on DDs as
the fault class D1 which describes missing activities as
faulty behaviour. F3 and F7 refer to an erroneously
activated operation in addition to the expected one, which
corresponds to the fault class D2. F2 is directly covered
by the fault class D3. F5 and F8 correspond both to D2
and D3 whereas the faults F9 - F13 representing the
register or bus faults are covered by D3 in terminal nodes.
F14 is also covered by D3 in terminal nodes. Note that the
faults F6 - F8 correspond to the micro-order level.

Fig.3. Interpretation of the microprocessor faults on DDs

Consider the classical fault model coverage by the
DD-approach on the example of the test when instruction
I7 (j=7) is carried out (bold activated path) in Fig.3.

The expected result is A=A’+R’ (the apostrophe means
the previous state of a register). Denote the real result as
A*. A fault is detected if A ≠ A*. By such a test the
following faults related to I7 (j=7) can be detected: D1, if
A* = A’ (the faults F1, F4 or F5), and D3, if e.g. A* =
A´∨R´ (the fault F2) or if A* = A’ (the fault F5). The
faults D2 for j=7 (F3), if A´+R´ is always activated, can
be detected by carrying out the instructions Ik, k ≠ 7.

In Table 1 it is shown which fault models from F1 to
F23 can be modelled at which type of nodes of DDs,
either at internal or terminal ones.

For example, since the internal nodes of the HLDD in
Fig.1, labelled by yi can be interpreted either as timing or
logic conditions (F16, F17), register decoding (F18),
instruction decoding (F19) or control signals (F20), it is
easy to see that all the fault classes from F16 to F20 can
be modelled at the internal nodes of DDs independently
of their functional meaning. The same can be said also
about the fault class F15, because these faults can be also
interpreted as decoding faults. The faults F9-F14 and F21-
F23 correspond to the fault in terminal nodes of DDs.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 4/6

The correspondence of the faults of the terminal nodes
of the HLDD in Fig.1 to the fault classes F21-F23 is
shown in Table 2.

The fault model defined on DDs can be regarded in a
certain sense as a generalization of the classical gate-
level stuck-at fault model for more higher level
representations of digital systems than the logic level.
When the stuck-at fault model is defined for the Boolean
variables, the new fault model is defined for the nodes of
DDs. The only difference is that when in the Boolean case
the value of the variable can change because of the fault
only between two values, either from 0 to 1 or from 1 to
0, then in the general case there are much more
possibilities for a faulty behavior of a node.

Table 2. Fault classes of HLDD terminal node faults
RTL faults DD faults

F21 Register faults in R1 and R2
F22 Bus faults for IN, R1, and R2
F23 R1 + R2, IN + R2, R1 * R2, IN * R2

5. Experimental results
To compare the efficiency of the high-level and low level
test generation, experiments were carried out with a
restricted class of digital systems - with a benchmark
family of n-bit simplified RISC processors [24].

Table 3. Experiments for bottom-up test generation

IS BW ATPG Time
(s)

Test
length

Opt.
test

length

Faults Detec-
ted

faults

Fault
cover
(%)

4 4 HTPG 0.02 63 25 612 611 99.8
 Syn. 0.21 30 25 596 595 99.8

4 8 HTPG 0.02 63 29 1168 1167 99.9
 Syn. 0.49 45 33 1168 1167 99.9

4 16 HTPG 0.03 63 29 2240 2239 99.9
 Syn. 1.16 63 36 2240 2239 99.9

4 32 HTPG 0.07 63 29 4404 4401 99.9
 Syn. 3.74 77 45 4404 4401 99.9

8 4 HTPG 0.02 120 30 708 708 100
 Syn. 0.19 45 25 708 708 100

8 8 HTPG 0.05 120 30 1320 1320 100
 Syn. 0.50 52 31 1232 1232 100

8 16 HTPG 0.08 120 29 2540 2540 100
 Syn. 1.25 61 41 2364 2364 100

8 32 HTPG 0.10 120 30 5018 5018 100
 Syn. 4.26 75 50 4676 4676 100

16 4 HTPG 0.08 224 39 900 900 100
 Syn. 0.29 46 32 855 855 100

16 8 HTPG 0.10 224 43 1612 1612 100
 Syn. 0.75 64 42 1531 1531 100

16 16 HTPG 0.13 224 42 3016 3016 100
 Syn. 1.86 73 48 2861 2861 100

16 32 HTPG 0.15 224 42 5908 5908 100
 Syn. 5.57 84 59 5607 5607 100

The family consists of processors which vary in the
instruction set (processors with 4, 8 and 16 instructions)
and in the bitwidth (4, 8, 16 and 32-bit processors). The

benchmark family was created by describing the high
level behavior of processors in VHDL and by
synthesizing the gate-level implementations with
SYNOPSYS. Then HLDD-models were synthesized both
for higher (instruction) level and lower (gate) level
designs. The results of experiments carried out with 12
different processors are depicted in Table 3.

Here, the columns have the following meaning: IS -
number of instructions, BW - bitwidth of the processor
data word, ATPG - type of the test generator (as reference
for comparison, the SYNOPSYS gate-level ATPG was
used), processor time in seconds used for test generation,
number of patterns generated by ATPG, number of
patterns before and after optimization, total number of
faults, number of faults detected, and the fault coverage.
Comparison of the speed of both test generators is
illustrated in Fig.4.

Bit W id th

0 .21
0.49

1.16

3 .74

0.19
0 .5

1 .25

4 .26

0 .29

0 .75

1 .86

5 .57

0

1

2

3

4

5

6

4 8 16 32 4 8 16 32 4

H TP G

8

S ynopsys

 4 8 16 Ins tru ction s
16 32

Figure 4. Comparison of test generation times.

6. Conclusions

The results of the paper can be formulated in the concise
form as follows. Different fault models for different
abstraction levels of digital systems can be replaced when
using HLDDs by the uniform node fault model. By this
technique, it is possible to represent groups of structural
faults through groups of functional faults. As the result,
the complexity of fault representation is reduced, and the
fault simulation level (together with simulation speed)
raised.
Depending on the adequacy of representing the structure
of the system, the fault model proposed for HLDDs can
cover a wide class of structural and functional faults
introduced for digital systems. The fault model on
HLDDs can be regarded as a generalization of the
classical gate-level stuck-at fault model for higher level
representations of digital systems. The stuck-at fault
model is defined for Boolean variables, whereas the

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 5/6

generalized new fault model is defined for the nodes of
DDs.

Acknowledgements

The work has been supported partly by EC FP 6 research
project VERTIGO FP6-2005-IST-5-033709, Enterprise
Estonia funded ELIKO Development Centre, Estonian SF
grants 7068 and 7483.
References

[1] L.Benini, G.De Micheli. Networks on Chip: a New
SoC Paradigm. IEEE Computer, Vol.35, No.1, pp.70-
78, 2002.

[2] A.Jantsch, H.Tenhunen. Networks on Chip. Kluwer
Academic Publishers, 2003.

[3] V.Agarwal, M.S.Hrishikesh, S.W.Keckler, D.Burger.
Clock Rate Versus IPC: The End of the Road for
Conventional Microarchitectures. Proc. of 27th
Annual Int.Symposium on Computer Architecture,
pp. 248-259.

[4] A.Bigot, F.Charpentier, H.Krupnova, I.Sans.
Deploying Hardware Platforms for SoC Validation:
An Industrial Case Study. FPL'2004, Antwerpen,
pp.64-73, Aug. 2004. Lecture Notes in Comp. Sci.
3203, Springer-Verlag 2004.

[5] R.Klein, T.Piekarz. Accelerating Functional
Simulation for Processor Based Designs. Mentor
Graphics Corporation. White paper, 2005.

[6] K.Roy, T.M.Mak, K.-T.T.Cheng. Test consideration
for nanometer-scale CMOS circuits. IEEE Design
and Test of Computers, vol.23, no 2, pp.128-136,
2006.

[7] B.Li, M.Hsiao, S.Sheng. A Novel SAT All-Solutions
Solver for Efficient Preimage Computation. In Proc.
of IEEE DATE, pp. 272–277. 2004.

[8] Mentor Graphics. Flextest. www.mentor.com.
[9] Synopsys. Tetramax. www.synopsys.com
[10] A.Fin, F.Fummi. Genetic Algorithms: the

Philosopher’s Stone or an Effective Solution for
High-Level TPG?. In Proc. of IEEE HLDVT, pp.
163–168. 2003.

[11] L.Zhang, I.Ghosh, M. Hsiao. Efficient Sequential
ATPG for Functional RTL Circuits. ITC, pp. 290–
298. 2003

[12] F. Xin, M. Ciesielski, and I. Harris. Design validation
of behavioral VHDL descriptions for arbitrary fault
models. In Proc. of IEEE ETS, pp. 156–161. 2005.

[13] A.K.Gupta, J.R.Armstrong. Functional Fault
modelling and Simulation for VLSI Devices. 22nd
Design Automation Conference, 1985, pp.720-726.

[14] S.M.Thatte, J.A.Abraham. Test Generation for
Microprocessors, IEEE Trans. On Computers, Vol.
C-29, No. 6, pp.429-441, June 1980.

[15] D.Brahme, J.A. Abraham. Functional Testing of
Microprocessors. IEEE Trans. On Computers, Vol.
C-33, No.6, pp.475-485, June 1984.

[16] S.Y.H.Su, T.Lin. Functional Testing Techniques for
Digital LSI/VLSI Systems. 21st DAC, 1984, pp.517-
528.

[17] L.Shen, S.Y.H.Su. A Functional Testing Method for
Microprocessors. IEEE Trans. on Computers, Vol.37,
No. 10, 1988, pp.1288-1293.

[18] P.C.Ward, J.R.Armstrong. Behavioral Fault
Simulation in VHDL. 27th ACM/IEEE Design
Automation Conference, 1990, pp.587-593.

[19] S.Ghosh, T.J.Chakraborty. On Behavior Fault
Modelling for Digital Designs. Kluwer Academic
Publishers.J. of Electronic testing: Theory and
Applications, 2, 1991, pp. 135-151.

[20] N. Giambiasi et. al. Test pattern generation for
behavioral descriptions in VHDL. Proc. of the VHDL
conference, Stockholm, 1991, pp. 228-234.

[21] S.Y.H.Su, T.Lin. Functional Testing Techniques for
Digital LSI/VLSI Systems. 21st DAC, 1984, pp.517-
528.

[22] L.Shen, S.Y.H.Su. A Functional Testing Method for
Microprocessors. IEEE Trans. on Comp., Vol.37, No.
10, 1988, pp.1288-1293.

[23] R.Ubar. Test Synthesis with alternative graphs. IEEE
Design & Test of Computers. Spring 1996, pp.48-57.

[24] E.Gramatova, M.Gulbins, M. Marzouki, A. Pataricza,
R. Sheinauskas, R. Ubar. Technical Report of the EC
project COPERNICUS JEP 9624 FUTEG No9/1995.
FUTEG Benchmarks.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 6/6

	5. Experimental results
	Table 3. Experiments for bottom-up test generation
	References

