
Developing Fault Models for Nanowire Logic Circuits

Daniel Gil, David de Andrés, Juan-Carlos Ruiz, Pedro Gil
Fault Tolerant Systems Research Group (GSTF), Universidad Politécnica de Valencia (UPV)

DISCA – ETS Informática Aplicada, Campus de Vera s/n, E-46022, Valencia, Spain
Phone: +34 96 3877007 Ext {75777, 75752, 85703, 79707}, Fax: +34 96 3877579

{dgil, ddandres, jcruizg, pgil}@disca.upv.es

Abstract

It is widely acknowledged that nanoelectronic

devices will suffer from more manufacturing and
operational faults than classical CMOS devices in
large-scale integrated circuits. The confident use of
these emerging technologies relies on our capacity to
better understand their fault mechanisms, and our
ability to deduce related fault models. These
challenging goals are addressed in this paper for
nanowire logic circuits, which constitute one of the
most promising technologies in the nanoelectronics
realm. Fault models are proposed attending to how
fault mechanisms manifest at device and logic
abstraction levels. This research is framed within a
more global investigation focused on the development
of suitable dependability assessment methodologies
and defect and fault tolerance strategies for systems
built-up using nanodevices.

1. Introduction

As CMOS technology enters the nanoelectronics
realm (tens of nanometres and below), where quantum
mechanical effects start to prevail, conventional CMOS
devices are meeting many technological challenges for
further scaling. This situation has motivated the
increasing emergence of a variety of new
nanoelectronic devices [1] [2].

As new generations of nanodevices are developed,
we become less familiar with their fault mechanisms
and the causes behind their failures [3]. On the one
hand, the nature of the materials and the physical
phenomena used in these technologies are very
different from current CMOS. On the other hand, it is
widely acknowledged that the very small sizes of the
resulting devices will provoke higher levels of
manufacturing defects than those affecting present-day
CMOS solutions. In addition, transient (or permanent)

in-service faults will have to be dealt with [4]. So
reliability is a big challenge in nanoelectronic devices
and architectures.

The confident use of the emerging technologies
relies on our capacity to better understand their fault
mechanisms, and our ability to develop related fault
models. Those fault models can be considered as a step
forward towards the dependability assessment of
emerging architectures for the definition of new and
efficient fault mitigation techniques [5].

Among the wide set of new proposed nanoelectronic
devices, 1D structures (Carbon Nanotubes (CNTs) and
Nanowires (NWs)) are one of the most promising to
develop logic circuits [6]. A number of factors
(scalability, performance, energy efficiency, gain,
operational reliability, room temperature operation,
CMOS technological compatibility, and CMOS
architectural compatibility) have been evaluated to
establish the potential use of different nanodevices. 1D
structures present the best results in most of these
factors. In addition, reconfigurable architectures based
on the use of programmable gate logic arrays are
suggested for 1D structures. The use of simple, regular,
crossbar structures seems to offer the best chance for
eventually fabricating nanocomputers with more than
1010 devices per chip.

So we will focus our study on 1D structures and,
more particularly, on nanowires. First of all, the
analysis of both CNTs and NWs exceeds the extension
of this paper. Secondly, NWs offer some interesting
advantages over CNTs, such as the ability of
manipulating and assembling NWs into different
structures and the difficulty in controlling the electronic
properties of nanotubes [7].

This paper focuses on the analysis of the main
manufacturing defect causes and mechanisms of
nanowire-based logic circuits. It allows the definition
of fault models at device and logic abstraction levels,
which will enable the development and precise

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 1/6

parameterisation of fault-tolerant schemes for
nanoelectronic systems in future works. Figure 1 shows
the applied methodology, which determines the
manifestation at the device and logic abstraction levels
of manufacturing defects in nanowires. Hence, it is
necessary to understand the hierarchical structure of
logic circuits at different abstraction levels, i.e. the
structure of logic circuits consisting of nanowire-based
devices (diodes and transistors).

Figure 1. Applied methodology: study of fault
manifestation at higher abstraction levels.

Section 2 presents a brief description of
semiconducting nanowires and the main devices and
logic circuits that can be designed with them. Section 3
studies fault causes and mechanisms related to
manufacturing defects, which leads to the identification
of fault models at device level. Fault models of some
representative logic circuits are defined in Section 4.
Finally, Section 5 provides some conclusions and
proposals for future work.

2. Semiconducting nanowires

Nanowires (NWs) are long thin wires made up of
semiconducting materials, such as silicon or
germanium. They have been fabricated with diameters
as small as 3 nm and lengths of up to hundreds of
micrometers [8].

The most successful method of controlled growth is
VLS (Vapour-Liquid-Solid) synthesis [8] [7]. VLS
growths crystalline structures using a liquid catalyst
seed such as gold or iron, at high temperature. The
catalyst absorbs the vaporized NW materials (silicon or
germanium plus a possible dopant) until it becomes
supersaturated, at which point a solid crystal begins to
form. NWs will continue growing until the catalyst is
cooled and becomes solid, or the vaporized crystalline
material is used up. When dopant materials are added
to the vapour, NWs will become semiconducting (p-
type or n-type, depending on the dopant). NWs can
conduct like a metal if they are highly doped. The
controlled growth of NWs also allows for the doping to
be varied along the length of the NW.

NWs exhibit some advantages over the nanotube
counterpart. NWs synthesis techniques provide a high

degree of control over their chemical composition,
physical dimensions, and electronic and optical
properties. This control provides many more active
device possibilities for NWs. On the other hand it is
difficult to control the properties of nanotubes.

2.1 Electronic devices with nanowires

By controlling the doping profile along the length of
the NW, active devices can be constructed [8].

A diode can be obtained in two different manners.
One method consists in crossing one p-type and one n-
type semiconducting NWs, creating a connection and
therefore a p-n junction. The other procedure is based
on creating a p-n junction in the same nanowire,
growing part of the nanowire with a p-type dopant and
then changing to an n-type dopant for the remainder of
the nanowire.

A field effect transistor (FET) can also be created
by crossing two nanowires. One of them has a low
doped region that works as the transistor channel. The
other is placed over the top of this region, with an
insulator separating the two wires. The top wire
controls the current in the bottom wire. An alternative
design consists in using nanowires as the channel in a
more conventional FET, similar to what is done with
carbon nanotubes [9].

2.2 Logic circuits with nanowires

A Diode-Resistor Logic like structure is proposed in
[7] as a possible way to implement AND and OR gate
designs. As Figure 2c shows, diodes consist of
nanowire crosspoints and resistors are based on
crosspoint NWFETs. In this way, two-dimensional
crosspoint structures can be used to implement simple
and regular designs.

Figure 2. AND gate designed with nanowires [7].

A pseudo-NMOS (in this case pseudo-PMOS) like
structure is also proposed in [7] to implement NAND
and NOR gate designs. Figure 3 shows the design of
the NOR gate. As before, FET transistors and resistors
are built as regular two-dimensional structures made of
crosspoint NWFETs.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 2/6

Figure 3. NOR gate designed with nanowires [6].

It is possible to build complex circuits extending the
previous structures. AND/OR arrays of programmable
crosspoints can be used to design Programmable Logic
Arrays (PLA), memory cores and programmable
crossbar interconnect arrays [8] [10]. Programmable
crosspoints exhibit hysteresis and non-volatile state
storage in order to work as programmable diodes or as
non-volatile read/write memory cells. Figure 4 roughly
reproduces the structure of a PLA OR plane,
comprising a diode-programmable wired-OR NW,
followed by a field-effect inverter NW for signal
restoration [10]. Crosspoints can be programmed on/off
by programming their resistance into low or high states.

Programmable crossbar arrays can be built from the
wired-OR programmable array, as long as each output
connects with only one selected input. This allows
routing any input to any output. This structure can be
useful to avoid defective resources in a post-fabrication
phase.

Figure 4. Scheme of an OR nanoPLA plane with
signal restoration [10].

3. Fault models at device level for
manufacturing defects

Some defects have been reported in nanowires and
crosspoints [10]. Nanowire defects include broken
wires, doping variations, and poor contacts. Defects in
programmable crosspoints lead to non-programmable
crosspoints or shorted crosspoints. Although defects
related to the bridging of adjacent nanowires have been
also reported, lesser incidence is expected.

Our goal is to analyse how these defects manifest at
the device abstraction level and suggest fault models at
this level. The knowledge of the structure of nanowire
devices (diodes and transistors) is therefore necessary.
The fault models development are summarised in the
following paragraphs and in Table 1.

Table 1. Fault models at device level for manufacturing defects in nanowires.
Fault models at device level Causes and mechanisms

(manufacturing defects [10]) Diodes FETs I/O connections
Broken wires open open open
Poor contacts delay delay delay Nanowire defects

Doping variation delay delay delay
Open crosspoint open/missing* open - Crosspoint defects
Short crosspoint short/extra** short -

Imperfect alignment short short short Bridging of adjacent nanowires
Shell thickness variations short short short

* In programmable circuits: missing devices due to permanent off crosspoints
** In programmable circuits: extra devices due to permanent on crosspoints

NWs may break along their axis during assembly,

due to mechanical stress in high length-to-diameter
ratio wires. As it was shown in section 2.1, nanowires
can constitute I/O connections, p-n junctions or the
channel of FET transistors. The consequence of this
defect, and our proposed fault model, may be an open
(the current intensity becomes null) in nanowire-based
devices (diodes and transistors) and I/O connections.

Poor contacts due to statistical number of atomic
scale bounds will increase the wire resistance out of the
designated resistance range. This defect can provoke a

variation of the timing RC constant in I/O connections
and devices. Delay is thus the proposed fault model.

Statistical doping may lead to an excessive variation
in the NW doping which can push its resistance out of
the designated range and provoke timing faults. The
suggested fault model is also delay, although the timing
variation in this case can be positive or negative.

Junctions between crossed NWs consist of tens of
atoms or molecules and the individual bond formation
is statistical in nature. Open and short defects can
occur in crosspoint junctions, leading to open and short
fault models for devices. In programmable circuits,

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 3/6

such as PLAs, defects can manifest as non-
programmable or shorted crosspoints, which cannot be
programmed into the on- or off-state, respectively. This
leads to missing or extra devices in the array [11].

Other defect is the bridging of adjacent nanowires.
Imperfect planar NW alignment and variations in core
shell thickness are potential causes of bridging and can
lead to obvious shorts between I/O connections or
device terminals. Radial shells around the (semi)
conducting NW cores prevent the shorting of adjacent
NWs, and of gated and control wires in transistors.

As previously stated, it is also necessary to study
faults occurring during normal operation. Wear out
processes can lead to permanent faults, and some
environmental agents may produce transient ones.
Possible fault mechanisms related to wear out include
mechanical stress, thermal processes, and electrostatic
discharge, like in carbon nanotubes [12] [13]. On the
other hand, external agents like thermal fluctuation and
cosmic radiation can cause transient faults in nanowire
devices. It is expected that transient faults will have a
high impact on these small devices [6]. Fault models
for wear out processes and environmental agents in
nanowires will be the subject of future research.

4. Fault models at logic level

It is first necessary to obtain the hierarchical
structure of the device-based logic circuit. Then, the
analysis of faults propagation and manifestation at
logic level will be based on the previously defined
device-level fault models (see Table 1). Although this
work assumes single and independent faults, the high
defect rate of new nanodevices suggests the interest of
a future analysis of the effect of multiple faulty devices.

This methodology has been applied to two
examples: a single gate and programmable circuits.

4.1 Example 1: AND gate

This first example deals with the AND gate whose
design and structure can be seen in Figure 2. It consists
of the following devices: two diodes and one resistor,
all of them based on nanowire crosspoints.

Figure 5 summarises the hierarchical structure, the
fault models at device level which are derived from
Table 1, and the proposed fault models at logic level.

Figure 5. Hierarchical structure and fault models for the AND gate.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 4/6

Fault models for defects in diodes and resistors are
explained by means of diagrams on the right side of
Figure 5. They are obtained by applying the fault
models at device level to the electronic circuit of
Figure 2b. Due to their complexity, some of them have
been obtained after PSPICE simulations.

It must be noted that defects in the wire connections
between the devices have been also considered. Open
faults due to broken wires may manifest as open faults
in the devices. Delay faults in devices due to poor
contacts or doping variation may provoke delay faults
in the gate. The bridging of adjacent wires can lead to
shorts between input-output, input-input or input-
control signals. In the first case the result is an obvious
stuck-at. In the second one, the bridging can produce
power supply shorts or error value 1 0 faults,
depending on the source of the inputs. The last fault

model is derived assuming that the two shorted signals
come directly from the supply layers.

In summary, a wide set of fault models have been
defined, although the most frequent may be logic value
error, mainly due to defects in the diodes.

4.2 Example 2: programmable circuits

This second example refers to programmable
circuits, such as PLAs or non-volatile memories based
on two-dimensional arrays of programmable
crosspoints that act as programmable diodes or
memory cells. Figure 6 summarises the hierarchical
structure, the fault models at device level and the
proposed fault models at logic level.

Figure 6. Hierarchical structure and fault models for programmable circuits.

In memory cells, defects may manifest as open or

short of programmable crosspoints, as shown in Table
1. This forces the content of the cell to one logic value
and therefore the assigned fault model is stuck-at.

This study has considered two subcircuits of the
PLA structure: the OR array of diodes and the
restoration array (see Figure 4). The OR array
comprises the programmable diodes and the static load
of each output. Defects in programmable diodes imply
missing or extra diodes (see Table 1). This manifests as

logic value errors, as depicted in the related figures.
Defects in the static load manifest as open/short fault
models at the crosspoint. These, in their turn, may
manifest as high impedance or stuck-at at logic level,
as figures show. Finally, the restoration circuit consists
of three NWFETs, as shown in Figure 4, for each
output of the array. They form a dynamic like inverter
structure, and each transistor is based on a nanowire
crosspoint. From open and short fault models at device
level (see Table 1), six cases can be easily analysed for

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 5/6

the three transistors. Open faults in the precharge/
evaluate transistors prevent the discharge/charge of the
output capacitance and may provoke logic value errors
0 1/1 0 (respectively), as shown in related figures.
Short faults in precharge transistor produce an obvious
stuck-at-0 fault in the output. Short faults in the
evaluate transistor may manifest in a more complex
way. As the related figure shows, a “0” input during
precharge cause a contention because both pull-up and
pull-down transistors will be ON, and the output cannot
be guaranteed to be “0” during precharge. This results
in an indetermination fault model. Finally, open/short
faults in the input FET avoid/force the charge of the
output capacitance in the pull-up subcircuit, which can
manifest as logic value error 1 0/0 1 (respectively).

The programmable crossbar array is a particular
case of a PLA structure, as stated in Section 2.2. Then
its proposed fault models match those of PLAs.

Defects of I/O interconnection nanowires have not
been studied in this work, due to the complexity of the
circuit, although their fault models seem to be similar.

As in the previous example, a wide set of fault
models have been obtained. The most frequent ones in
PLAs and crossbar arrays may be those related to
defects in programmable diodes, which are the most
abundant devices. Specifically, logic value errors due
to missing and extra diodes. In memory cores the
predominant fault model is stuck-at.

5. Conclusions and challenges

This work has presented a study about the definition
of fault models for nanowire logic circuits. Nanowire
devices are widely acknowledged as very promising
nanodevices to build logic circuits due to their good
properties. In addition, reconfigurable architectures
based on the use of programmable gate logic arrays are
suggested for nanowire structures.

We have analysed the effects of nanowire
manufacturing defects in logic circuits following a
bottom-up methodology. The fault manifestation from
the physical to the device and, from here, to the logic
abstraction level has been studied. This process needs
the previous definition of the hierarchical structure of
the considered logic circuits at the different levels. This
methodology, which will greatly benefit from the use of
CAD tools for the simulation of nanowire-based device
models, can be applied to any logic circuit regardless
its complexity. Two examples of different complexity
have been analysed, and a wide set of fault models has
been obtained, emphasizing the most frequent ones.

Those fault models can be considered as a step
forward towards the dependability assessment of

emerging architectures for the definition of new and
efficient fault mitigation techniques.

Some challenges requiring a further research include
(i) the analysis of the effect of multiple faulty devices
in nanowire circuits; (ii) the study of the faults
produced during operation, particularly, wear out
processes and environmental agents that provoke
transient faults in nanowire circuits; and (iii) a similar
overall research for other promising devices (mainly
carbon nanotube, spintronic and molecular devices).

6. Acknowledgements

This work has been sponsored by the Spanish
project MCYT TEC 2005-05119/MIC.

7. References

[1] R. Waser, “Nanoelectronics and Information
Technology”, Wiley-VCH, 2003.

[2] J. Han, “Fault-Tolerant Architectures for Nanoelectronic
and Quantum Devices”, Ph.D. dissertation, Delft University
of Technology, 2004.

[3] W. Kuo, “Challenges related to reliability in nano
electronics”, IEEE Trans. on Reliability, vol. 55, no. 4, 2006.

[4] R. Forshawet al., “Nano_Arch_Review”, IST Programme
(Future and Emerging Technologies), 2004.

[5] D. Gil, et al., “Identifying Fault Mechanisms and Models
of Emerging Nanoelectronic Devices”. IEEE Int. Conf. on
Depend. Syst. and Networks, Edinburgh, UK, pp. 288, 2007.

[6] International Technology Roadmap for Semiconductors
(ITRS): Emerging Research Devices, 2007.

[7] Z. M. Nuseibeh and A.M. Halawani, “Electronic
Components using SiNWs”, Electrical and Electronic
Engineering Department, Imperial College London 2006.

[8] M. Haselman and S. Hauck, “The Future of Integrated
Circuits: A Survey of Nano-electronics”, Submitted to
Proceedings of IEEE, 2007.

[9] G. W. Hanson, “Fundamentals of Nanoelectronics”,
Pearson-Prentice Hall, 2008.

[10] Dehon, “Nanowire-based Programmable Architectures”,
ACM Journal on Emerging Technologies in Computing
Systems, Vol. 1, No. 2, pp. 109-162, July 2005.

[11] W. Rao, et al., “Fault Tolerant Approaches to
Nanoelectronic Programmable Logic Arrays”, IEEE Int. Conf
on Dependable Syst. and Networks, Edinburgh, UK, 2007.

[12] L. Anghel, “Conception Robuste dans les Technologies
CMOS Avancées et post-CMOS“, Lab. TIMA, 2007.

[13] T. Dang, “Nanotubes de carbone, SET et QCA en
logique: modélisation de fautes“, Lab. TIMA, 2005.

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 6/6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

