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Abstract 

 
It is widely acknowledged that nanoelectronic 

devices will suffer from more manufacturing and 
operational faults than classical CMOS devices in 
large-scale integrated circuits. The confident use of 
these emerging technologies relies on our capacity to 
better understand their fault mechanisms, and our 
ability to deduce related fault models. These 
challenging goals are addressed in this paper for 
nanowire logic circuits, which constitute one of the 
most promising technologies in the nanoelectronics 
realm. Fault models are proposed attending to how 
fault mechanisms manifest at device and logic 
abstraction levels. This research is framed within a 
more global investigation focused on the development 
of suitable dependability assessment methodologies 
and defect and fault tolerance strategies for systems 
built-up using nanodevices. 
 
1. Introduction 
 

As CMOS technology enters the nanoelectronics 
realm (tens of nanometres and below), where quantum 
mechanical effects start to prevail, conventional CMOS 
devices are meeting many technological challenges for 
further scaling. This situation has motivated the 
increasing emergence of a variety of new 
nanoelectronic devices [1] [2]. 

As new generations of nanodevices are developed, 
we become less familiar with their fault mechanisms 
and the causes behind their failures [3]. On the one 
hand, the nature of the materials and the physical 
phenomena used in these technologies are very 
different from current CMOS. On the other hand, it is 
widely acknowledged that the very small sizes of the 
resulting devices will provoke higher levels of 
manufacturing defects than those affecting present-day 
CMOS solutions. In addition, transient (or permanent) 

in-service faults will have to be dealt with [4]. So 
reliability is a big challenge in nanoelectronic devices 
and architectures. 

The confident use of the emerging technologies 
relies on our capacity to better understand their fault 
mechanisms, and our ability to develop related fault 
models. Those fault models can be considered as a step 
forward towards the dependability assessment of 
emerging architectures for the definition of new and 
efficient fault mitigation techniques [5]. 

Among the wide set of new proposed nanoelectronic 
devices, 1D structures (Carbon Nanotubes (CNTs) and 
Nanowires (NWs)) are one of the most promising to 
develop logic circuits [6]. A number of factors 
(scalability, performance, energy efficiency, gain, 
operational reliability, room temperature operation, 
CMOS technological compatibility, and CMOS 
architectural compatibility) have been evaluated to 
establish the potential use of different nanodevices. 1D 
structures present the best results in most of these 
factors. In addition, reconfigurable architectures based 
on the use of programmable gate logic arrays are 
suggested for 1D structures. The use of simple, regular, 
crossbar structures seems to offer the best chance for 
eventually fabricating nanocomputers with more than 
1010 devices per chip. 

So we will focus our study on 1D structures and, 
more particularly, on nanowires. First of all, the 
analysis of both CNTs and NWs exceeds the extension 
of this paper. Secondly, NWs offer some interesting 
advantages over CNTs, such as the ability of 
manipulating and assembling NWs into different 
structures and the difficulty in controlling the electronic 
properties of nanotubes [7]. 

This paper focuses on the analysis of the main 
manufacturing defect causes and mechanisms of 
nanowire-based logic circuits. It allows the definition 
of fault models at device and logic abstraction levels, 
which will enable the development and precise 
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parameterisation of fault-tolerant schemes for 
nanoelectronic systems in future works. Figure 1 shows 
the applied methodology, which determines the 
manifestation at the device and logic abstraction levels 
of manufacturing defects in nanowires. Hence, it is 
necessary to understand the hierarchical structure of 
logic circuits at different abstraction levels, i.e. the 
structure of logic circuits consisting of nanowire-based 
devices (diodes and transistors). 

 

 
Figure 1. Applied methodology: study of fault 
manifestation at higher abstraction levels. 

 

Section 2 presents a brief description of 
semiconducting nanowires and the main devices and 
logic circuits that can be designed with them. Section 3 
studies fault causes and mechanisms related to 
manufacturing defects, which leads to the identification 
of fault models at device level. Fault models of some 
representative logic circuits are defined in Section 4. 
Finally, Section 5 provides some conclusions and 
proposals for future work. 
 
2. Semiconducting nanowires 
 

Nanowires (NWs) are long thin wires made up of 
semiconducting materials, such as silicon or 
germanium. They have been fabricated with diameters 
as small as 3 nm and lengths of up to hundreds of 
micrometers [8]. 

The most successful method of controlled growth is 
VLS (Vapour-Liquid-Solid) synthesis [8] [7]. VLS 
growths crystalline structures using a liquid catalyst 
seed such as gold or iron, at high temperature. The 
catalyst absorbs the vaporized NW materials (silicon or 
germanium plus a possible dopant) until it becomes 
supersaturated, at which point a solid crystal begins to 
form. NWs will continue growing until the catalyst is 
cooled and becomes solid, or the vaporized crystalline 
material is used up. When dopant materials are added 
to the vapour, NWs will become semiconducting (p-
type or n-type, depending on the dopant). NWs can 
conduct like a metal if they are highly doped. The 
controlled growth of NWs also allows for the doping to 
be varied along the length of the NW. 

NWs exhibit some advantages over the nanotube 
counterpart. NWs synthesis techniques provide a high 

degree of control over their chemical composition, 
physical dimensions, and electronic and optical 
properties. This control provides many more active 
device possibilities for NWs. On the other hand it is 
difficult to control the properties of nanotubes. 
 
2.1 Electronic devices with nanowires 
 

By controlling the doping profile along the length of 
the NW, active devices can be constructed [8]. 

A diode can be obtained in two different manners. 
One method consists in crossing one p-type and one n-
type semiconducting NWs, creating a connection and 
therefore a p-n junction. The other procedure is based 
on creating a p-n junction in the same nanowire, 
growing part of the nanowire with a p-type dopant and 
then changing to an n-type dopant for the remainder of 
the nanowire. 

A field effect transistor (FET) can also be created 
by crossing two nanowires. One of them has a low 
doped region that works as the transistor channel. The 
other is placed over the top of this region, with an 
insulator separating the two wires. The top wire 
controls the current in the bottom wire. An alternative 
design consists in using nanowires as the channel in a 
more conventional FET, similar to what is done with 
carbon nanotubes [9]. 
 
2.2 Logic circuits with nanowires 
 

A Diode-Resistor Logic like structure is proposed in 
[7] as a possible way to implement AND and OR gate 
designs. As Figure 2c shows, diodes consist of 
nanowire crosspoints and resistors are based on 
crosspoint NWFETs. In this way, two-dimensional 
crosspoint structures can be used to implement simple 
and regular designs. 

 

 
Figure 2. AND gate designed with nanowires [7]. 
 

A pseudo-NMOS (in this case pseudo-PMOS) like 
structure is also proposed in [7] to implement NAND 
and NOR gate designs. Figure 3 shows the design of 
the NOR gate. As before, FET transistors and resistors 
are built as regular two-dimensional structures made of 
crosspoint NWFETs. 
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Figure 3. NOR gate designed with nanowires [6]. 
 

It is possible to build complex circuits extending the 
previous structures. AND/OR arrays of programmable 
crosspoints can be used to design Programmable Logic 
Arrays (PLA), memory cores and programmable 
crossbar interconnect arrays [8] [10]. Programmable 
crosspoints exhibit hysteresis and non-volatile state 
storage in order to work as programmable diodes or as 
non-volatile read/write memory cells. Figure 4 roughly 
reproduces the structure of a PLA OR plane, 
comprising a diode-programmable wired-OR NW, 
followed by a field-effect inverter NW for signal 
restoration [10]. Crosspoints can be programmed on/off 
by programming their resistance into low or high states. 

Programmable crossbar arrays can be built from the 
wired-OR programmable array, as long as each output 
connects with only one selected input. This allows 
routing any input to any output. This structure can be 
useful to avoid defective resources in a post-fabrication 
phase. 

 
Figure 4. Scheme of an OR nanoPLA plane with 
signal restoration [10]. 
 
3. Fault models at device level for 
manufacturing defects 
 

Some defects have been reported in nanowires and 
crosspoints [10]. Nanowire defects include broken 
wires, doping variations, and poor contacts. Defects in 
programmable crosspoints lead to non-programmable 
crosspoints or shorted crosspoints. Although defects 
related to the bridging of adjacent nanowires have been 
also reported, lesser incidence is expected. 

Our goal is to analyse how these defects manifest at 
the device abstraction level and suggest fault models at 
this level. The knowledge of the structure of nanowire 
devices (diodes and transistors) is therefore necessary. 
The fault models development are summarised in the 
following paragraphs and in Table 1. 

Table 1. Fault models at device level for manufacturing defects in nanowires. 
Fault models at device level Causes and mechanisms  

(manufacturing defects [10]) Diodes FETs I/O connections 
Broken wires open open open 
Poor contacts delay delay delay Nanowire defects 

Doping variation delay delay delay 
Open crosspoint open/missing* open - Crosspoint defects 
Short crosspoint short/extra** short - 

Imperfect alignment short short short Bridging of adjacent nanowires 
Shell thickness variations short short short 

* In programmable circuits: missing devices due to permanent off crosspoints 
** In programmable circuits: extra devices due to permanent on crosspoints 

 
NWs may break along their axis during assembly, 

due to mechanical stress in high length-to-diameter 
ratio wires. As it was shown in section 2.1, nanowires 
can constitute I/O connections, p-n junctions or the 
channel of FET transistors. The consequence of this 
defect, and our proposed fault model, may be an open 
(the current intensity becomes null) in nanowire-based 
devices (diodes and transistors) and I/O connections. 

Poor contacts due to statistical number of atomic 
scale bounds will increase the wire resistance out of the 
designated resistance range. This defect can provoke a 

variation of the timing RC constant in I/O connections 
and devices. Delay is thus the proposed fault model. 

Statistical doping may lead to an excessive variation 
in the NW doping which can push its resistance out of 
the designated range and provoke timing faults. The 
suggested fault model is also delay, although the timing 
variation in this case can be positive or negative. 

Junctions between crossed NWs consist of tens of 
atoms or molecules and the individual bond formation 
is statistical in nature. Open and short defects can 
occur in crosspoint junctions, leading to open and short 
fault models for devices. In programmable circuits, 
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such as PLAs, defects can manifest as non-
programmable or shorted crosspoints, which cannot be 
programmed into the on- or off-state, respectively. This 
leads to missing or extra devices in the array [11]. 

Other defect is the bridging of adjacent nanowires. 
Imperfect planar NW alignment and variations in core 
shell thickness are potential causes of bridging and can 
lead to obvious shorts between I/O connections or 
device terminals. Radial shells around the (semi) 
conducting NW cores prevent the shorting of adjacent 
NWs, and of gated and control wires in transistors. 

As previously stated, it is also necessary to study 
faults occurring during normal operation. Wear out 
processes can lead to permanent faults, and some 
environmental agents may produce transient ones. 
Possible fault mechanisms related to wear out include 
mechanical stress, thermal processes, and electrostatic 
discharge, like in carbon nanotubes [12] [13]. On the 
other hand, external agents like thermal fluctuation and 
cosmic radiation can cause transient faults in nanowire 
devices. It is expected that transient faults will have a 
high impact on these small devices [6]. Fault models 
for wear out processes and environmental agents in 
nanowires will be the subject of future research. 

 
4. Fault models at logic level 
 

It is first necessary to obtain the hierarchical 
structure of the device-based logic circuit. Then, the 
analysis of faults propagation and manifestation at 
logic level will be based on the previously defined 
device-level fault models (see Table 1). Although this 
work assumes single and independent faults, the high 
defect rate of new nanodevices suggests the interest of 
a future analysis of the effect of multiple faulty devices. 

This methodology has been applied to two 
examples: a single gate and programmable circuits. 
 
4.1 Example 1: AND gate 
 

This first example deals with the AND gate whose 
design and structure can be seen in Figure 2. It consists 
of the following devices: two diodes and one resistor, 
all of them based on nanowire crosspoints. 

Figure 5 summarises the hierarchical structure, the 
fault models at device level which are derived from 
Table 1, and the proposed fault models at logic level.  

 
Figure 5. Hierarchical structure and fault models for the AND gate. 
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Fault models for defects in diodes and resistors are 
explained by means of diagrams on the right side of 
Figure 5. They are obtained by applying the fault 
models at device level to the electronic circuit of 
Figure 2b. Due to their complexity, some of them have 
been obtained after PSPICE simulations. 

It must be noted that defects in the wire connections 
between the devices have been also considered. Open 
faults due to broken wires may manifest as open faults 
in the devices. Delay faults in devices due to poor 
contacts or doping variation may provoke delay faults 
in the gate. The bridging of adjacent wires can lead to 
shorts between input-output, input-input or input-
control signals. In the first case the result is an obvious 
stuck-at. In the second one, the bridging can produce 
power supply shorts or error value 1 0 faults, 
depending on the source of the inputs. The last fault 

model is derived assuming that the two shorted signals 
come directly from the supply layers. 

In summary, a wide set of fault models have been 
defined, although the most frequent may be logic value 
error, mainly due to defects in the diodes. 
 
4.2 Example 2: programmable circuits 
 

This second example refers to programmable 
circuits, such as PLAs or non-volatile memories based 
on two-dimensional arrays of programmable 
crosspoints that act as programmable diodes or 
memory cells. Figure 6 summarises the hierarchical 
structure, the fault models at device level and the 
proposed fault models at logic level. 

 
Figure 6. Hierarchical structure and fault models for programmable circuits. 

 
In memory cells, defects may manifest as open or 

short of programmable crosspoints, as shown in Table 
1. This forces the content of the cell to one logic value 
and therefore the assigned fault model is stuck-at. 

This study has considered two subcircuits of the 
PLA structure: the OR array of diodes and the 
restoration array (see Figure 4). The OR array 
comprises the programmable diodes and the static load 
of each output. Defects in programmable diodes imply 
missing or extra diodes (see Table 1). This manifests as 

logic value errors, as depicted in the related figures. 
Defects in the static load manifest as open/short fault 
models at the crosspoint. These, in their turn, may 
manifest as high impedance or stuck-at at logic level, 
as figures show. Finally, the restoration circuit consists 
of three NWFETs, as shown in Figure 4, for each 
output of the array. They form a dynamic like inverter 
structure, and each transistor is based on a nanowire 
crosspoint. From open and short fault models at device 
level (see Table 1), six cases can be easily analysed for 
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the three transistors. Open faults in the precharge/ 
evaluate transistors prevent the discharge/charge of the 
output capacitance and may provoke logic value errors 
0 1/1 0 (respectively), as shown in related figures. 
Short faults in precharge transistor produce an obvious 
stuck-at-0 fault in the output. Short faults in the 
evaluate transistor may manifest in a more complex 
way. As the related figure shows, a “0” input during 
precharge cause a contention because both pull-up and 
pull-down transistors will be ON, and the output cannot 
be guaranteed to be “0” during precharge. This results 
in an indetermination fault model. Finally, open/short 
faults in the input FET avoid/force the charge of the 
output capacitance in the pull-up subcircuit, which can 
manifest as logic value error 1 0/0 1 (respectively). 

The programmable crossbar array is a particular 
case of a PLA structure, as stated in Section 2.2. Then 
its proposed fault models match those of PLAs. 

Defects of I/O interconnection nanowires have not 
been studied in this work, due to the complexity of the 
circuit, although their fault models seem to be similar. 

As in the previous example, a wide set of fault 
models have been obtained. The most frequent ones in 
PLAs and crossbar arrays may be those related to 
defects in programmable diodes, which are the most 
abundant devices. Specifically, logic value errors due 
to missing and extra diodes. In memory cores the 
predominant fault model is stuck-at. 
 
5. Conclusions and challenges 
 

This work has presented a study about the definition 
of fault models for nanowire logic circuits. Nanowire 
devices are widely acknowledged as very promising 
nanodevices to build logic circuits due to their good 
properties. In addition, reconfigurable architectures 
based on the use of programmable gate logic arrays are 
suggested for nanowire structures. 

We have analysed the effects of nanowire 
manufacturing defects in logic circuits following a 
bottom-up methodology. The fault manifestation from 
the physical to the device and, from here, to the logic 
abstraction level has been studied. This process needs 
the previous definition of the hierarchical structure of 
the considered logic circuits at the different levels. This 
methodology, which will greatly benefit from the use of 
CAD tools for the simulation of nanowire-based device 
models, can be applied to any logic circuit regardless 
its complexity. Two examples of different complexity 
have been analysed, and a wide set of fault models has 
been obtained, emphasizing the most frequent ones. 

Those fault models can be considered as a step 
forward towards the dependability assessment of 

emerging architectures for the definition of new and 
efficient fault mitigation techniques. 

Some challenges requiring a further research include 
(i) the analysis of the effect of multiple faulty devices 
in nanowire circuits; (ii) the study of the faults 
produced during operation, particularly, wear out 
processes and environmental agents that provoke 
transient faults in nanowire circuits; and (iii) a similar 
overall research for other promising devices (mainly 
carbon nanotube, spintronic and molecular devices). 
 
6. Acknowledgements 
 

This work has been sponsored by the Spanish 
project MCYT TEC 2005-05119/MIC. 
 
7. References 
 

[1] R. Waser, “Nanoelectronics and Information 
Technology”, Wiley-VCH, 2003. 

[2] J. Han, “Fault-Tolerant Architectures for Nanoelectronic 
and Quantum Devices”, Ph.D. dissertation, Delft University 
of Technology, 2004. 

[3] W. Kuo, “Challenges related to reliability in nano 
electronics”, IEEE Trans. on Reliability, vol. 55, no. 4, 2006. 

[4] R. Forshawet al., “Nano_Arch_Review”, IST Programme 
(Future and Emerging Technologies), 2004. 

[5] D. Gil, et al., “Identifying Fault Mechanisms and Models 
of Emerging Nanoelectronic Devices”. IEEE Int. Conf. on 
Depend. Syst. and Networks, Edinburgh, UK, pp. 288, 2007. 

[6] International Technology Roadmap for Semiconductors 
(ITRS): Emerging Research Devices, 2007. 

[7] Z. M. Nuseibeh and A.M. Halawani, “Electronic 
Components using SiNWs”, Electrical and Electronic 
Engineering Department, Imperial College London 2006. 

[8] M. Haselman and S. Hauck, “The Future of Integrated 
Circuits: A Survey of Nano-electronics”, Submitted to 
Proceedings of IEEE, 2007. 

[9] G. W. Hanson, “Fundamentals of Nanoelectronics”, 
Pearson-Prentice Hall, 2008. 

[10] Dehon, “Nanowire-based Programmable Architectures”, 
ACM Journal on Emerging Technologies in Computing 
Systems, Vol. 1, No. 2, pp. 109-162, July 2005. 

[11] W. Rao, et al., “Fault Tolerant Approaches to 
Nanoelectronic Programmable Logic Arrays”, IEEE Int. Conf 
on Dependable Syst. and Networks, Edinburgh, UK, 2007. 

[12] L. Anghel, “Conception Robuste dans les Technologies 
CMOS Avancées et post-CMOS“, Lab. TIMA, 2007. 

[13] T. Dang, “Nanotubes de carbone, SET et QCA en 
logique: modélisation de fautes“, Lab. TIMA, 2005. 

IEEE/IFIP DSN-2008 2nd Workshop on Dependable and Secure Nanocomputing, June 27, 2008 Page 6/6



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




