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•Side Channel Attacks

•Asynchronous nanocircuits for security

•Faults in asynchronous fine grained pipelines

•Robust Codes

•Basic properties and design purpose

•Minimum distance robust codes

•Application to AES

•Fault Simulation
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Nanocircuits and Async in Security
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Nanocircuits

•Lower signal to noise ratio

•Harder to probe or reverse

engineer

•Higher variability allows

design of novel features like

physically unclonable

functions (PUF)

•Higher fault rates

•Higher variability

Asynchronous QDI

•Clockless designs have been

shown to have natural benefits

against power and EMI attacks

•Tolerant to variability

•Natural fault tolerance



Faults in Asynchronous QDI Design
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1.Deadlock

2. Invalid data token (‘11’)

3.Data modification (flipping a value of a data

token)

4.Data generation (creation of a data token)

5.Data deletion (deletion of a data token)



Data Insertion/Deletion
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Data Creation/Deletion
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•A single transient fault can create a stream of erroneous data

•Error at output can repeat indefinitely

Main Characteristics

Solution Criteria

•Detect token insertions, not just prevent the effect

•Detection allows reaction/prevention to an attack

•Concurrent error detection using error control codes

•Detect all possible token insertions

•Reduce the worst detection probability

Can we exploit the repeating nature of errors to

improve error detection?



Robust Error Detecting Codes
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•Nonlinear

•ALL errors are detectable with a high probability

•Provide a guaranteed level of protection for all errors



Error Detecting Codes
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•Linear codes have |C| errors which are undetectable

•Repeating errors do not improve error detection
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Every error is missed for at most R messages (max Q(e)=R/|C|)

Detection probability increases as more erroneous messages are observed



Systematic Robust Codes
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f(x)  “highly nonlinear function”

optimum when f(x) is a “perfect nonlinear function”

(k+1,k,1) code with R=2k-1 



Minimum Distance Robust Codes
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p(x) parity

{(x,p(x)) } is a linear code with distance d 

f(x) is a perfect nonlinear function 

(k+2,k,2) code with R=2k-1



Application to Asynchronous AES
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Linear parity:  35%

Robust:   100%

Robust and parity: 120%

(x,p(x))

(x,f(x))

(x,p(x),f(x))



Evaluation
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Random Inputs

Faults causing

single token

creations/deletion

s

How long does it take to detect the erroneous behavior?



Histogram of Manifestations
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Synthesized using

Desing Compiler

216 two input XOR

gates

Multiplicity of Errors

resulting from single

faults

•27% of errors are even

•Many Errors are of a

high multiplicity



Simulation Results
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27% of token

creations/deletions

missed
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• Token creation/deletion can lead to a long

stream of erroneous data

• Repeating nature of the errors can be

used to enhance the error detection

• Beneficial for security

• Detect other failures (data modification)

• Adds another level of security


