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Abstract  
Built-in self-test techniques have been widely 
researched and adopted for reasons of improvements in 
test time and test cost, reduction in test resources 
required for test of large chips with embedded cores, 
and for field testability. While the adoption of these 
techniques is becoming prevalent, there continue to be 
challenges in making BIST solutions comprehensive to 
meet several design and application constraints. This 
paper describes the use of BIST implementations for 
self-test of logic and memories in an automotive SOC, 
(designed in Texas Instruments (India)), to support field 
testability. Novel aspects of this solution include (i) 
programmable coverage for logic, (ii) built-in self-
analysis and self-repair for memories, and (iii) support 
for various system and application level interfaces for 
field test. It is shown how conventional BIST techniques 
must be augmented to provide test solutions in a system 
context. 
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1 Introduction 
The paradigm of one-time manufacturing test may be 
questioned for three possible reasons: (i) The increasing 
use of electronic components in safety critical systems 
where periodic testing, including in the application on 
the field, is recommended. (ii) The need to check the 
operating parameters of the device during its use for 
conformance to specifications, due to design variability 
in deep sub-micron technologies. (iii) The increasing 
inability to test for all defect models at time-zero 
manufacturing tests, and the need to monitor their 
influence during normal operation. These additional 
requirements are driven by the need for high 
dependability and low down-time in safety critical 
systems. Several design methodologies at the chip and 
system level have been proposed, leading to online 
testing, error correction and fault tolerance [1,2,3]. 
These are based on code-space redundancy, compute 
time redundancy, and module redundancy, and the 
associated check mechanisms.  Corrective measures are 
based on this redundancy and check mechanisms, and 
control the latency period in which recovery is possible. 
In this paper, the design and implementation for field 
self-test for logic and memories for an automotive 
application SOC (system-on-chip), which has been 
designed in Texas Instruments (India), using built-in 
self-test (BIST) techniques, is described. While the 

application of such BIST techniques is well-known 
[4,5,6], the paper explains various chip, system and 
application level considerations which must be addressed 
to provide adequate controllability and observability 
during field test. The main contributions of this work 
include: (i) scaleable implementation solutions for 
obtaining programmable coverage, (ii) built-in self-
analysis and self-repair for memories, and (iii) support for 
various system and application level interfaces for field 
test. Deterministic BIST with re-seeding is used for logic 
self-test [7] and programmable memory BIST [6] for 
memory self-test. It is shown how interfaces to 
conventional BIST techniques must be augmented, 
(together with the techniques themselves in some cases), 
to realize field testability. (Only an off-line periodic test 
solution with a fixed test schedule is considered in this 
paper). 
 
The paper is organized into seven sections. Section 2 
provides an overview of system level self-test. Section 3 
describes the procedure for logic self-test, together with 
internal and external design considerations. The 
architecture, and its corresponding implementation, are 
explained in Section 4. Section 5 describes the procedure, 
considerations and architecture / implementation for 
memory self-test. Some device specific information is 
provided in Section 6. Section 7 concludes the paper. 
 
2 System Level Overview of Self-test 
The ability and ease of ascertaining the status of a device, 
whether it is functional or faulty, within an embedded 
application, are determined by a few device and system 
level parameters. These include: 
(a) The type of tests performed, namely for static or 

parametric faults, and the portion of the device 
covered by the test. 

(b) The test schedule, whether the test runs concurrently 
with normal operation, (interleaved with normal 
operation or self-checking [3]), or is run off-line non-
concurrently, either completely or in parts. 

(c) The ability of the external environment to trigger the 
test at different times, ascertain the duration of the 
test and time of test completion, and the status of test 
execution. 

 
Item (a) above is device specific, item (b) depends upon 
how the application runs on the device, and item (c) 
depends upon the interface of the device to the rest of the 
system. Based on these parameters, a few design and test 



   

considerations emerge to successfully implement and 
support field testability. These include: 
 
(a) Support for power-on condition test through 

hardware configuration and periodic test through 
software configuration. 

(b) Device specific test configuration, either through 
test mode hardware or through CPU (central 
processing unit – or processor) control through 
software. 

(c) Choice of test interface, either through internal 
device functional or test bus, or through standard 
external test interface (e.g. JTAG interface), or 
standard external functional interface (e.g. USB or 
other host interfaces), 

(d) Storage of the hardware or software controlled test 
configuration either as a fixed setup in a ROM or a 
variable and programmable setup in a RAM. 
(Various setup parameters are described together 
with the implementation in Sections 4 and 6. 
Examples include input seeds for stimuli 
generation for logic, algorithms for test of different 
memory cores and repair analysis, golden 
signatures for response comparison, etc.). 

 
Figure 1 illustrates the high level interface of the DUT 
(device under test) to the system. It may be noted that 
since the CPU may be used for test control, the device 
configuration may or may not directly permit the CPU 
and its associated memory to be tested at the same time. 
Two different cases of self-test, therefore, emerge: 
 
Non-destructive self-test (NDST): Here the test control 
portion, (e.g. CPU and associated memory, or dedicated 
test controller), of the DUT is not included in field test. 
This provides greater flexibility of test scheduling and 
sequencing, e.g. for periodic online testing, inter-leaved 
testing, resumption of normal operation during test and 
 

 
Figure 1: System level diagram for self test. 

 
upon its completion. However, it is at the expense of 
the loss of coverage of this module. (Normal operation 

of power control or clock control logic is required for 
correct test and hence these blocks are almost always left 
out of the scope of such tests as well).  
 
Destructive self-test (DST): Here the entire device is 
tested, and as such, the test process is destructive. 
Recovery to resume normal operation during test or at the 
end of it is not possible. A standard procedure, e.g. warm 
reset sequence, must be followed to read and analyze the 
results of the test and take corrective measures. The state 
of the DUT is lost, and a re-start of the application, (e.g. 
CPU boot), is required. (In this device, the self-test 
implementation is destructive). 
 
3 Design for Logic Self-test 
There are various ways to successfully implement logic 
self-test in a device.  The generic self-test procedure, 
along with generic design and application level 
considerations, are presented here.  
 
3.1 Self-test Procedure  
The procedure for carrying out logic self-test in the field 
is based on a common software and architectural 
protocol. This is illustrated in Figure 2. The steps are 
explained below. 
 
Reset control: Upon a successful power-on and reset 
sequence, the CPU operation is activated. Its bootstrap 
values are loaded by latching values on the device input 
pins upon an external reset, or through the default boot 
control register configuration. As part of this boot 
sequence, the self-test mode is checked. If enabled, self-
test is executed internally as part of this power-on 
sequence. Self-test can also be executed through an 
external interface (e.g. JTAG, USB, etc.), after the CPU is 
halted. Both the internal or external modes of self-test 
operation can also be invoked through application code 
either from ROM or RAM. (In this design, a RAM based 
solution has been implemented). 
 
Status register check: In the self-test routine, the 
completion of status register is first checked. If it is set, 
then the results of the previous (just completed) self-test 
operation are read. If not, it is an indication to begin a 
new self-test operation. This check prevents the device 
from entering into a self-loop, and de-couples the internal 
self-test operation and application code.  
 
Self-test configuration: The association data and control 
for self-test are set, (fixed in ROM or loaded through 
CPU or external interface into RAM), in various 
configuration registers. These include different seed 
values, corresponding pattern count numbers and 
resulting golden signatures, and at-speed PLL clock 
control settings for different test modes. Such a variety in 
the configuration allows different coverage numbers to be 



   

targeted through different tests (stuck-at, transition, 
etc.) through varying number of seeds and pattern 
counts. 
 

 
Figure 2: Procedure for logic self-test. 

 
This is a significant advantage of re-seeding based 
BIST techniques and internal clocks [7,8].  
 
Pass/Fail status generation: At the end of each phase 
of self-test, the resulting signature is stored in the status 
register as well as compared with the golden signature. 
At the end of all the phases, the Pass/Fail information 
is captured into the status register. 
 
Resumption after self-test: This can be done through an 
external or internal reset. Care must be taken not to 
disturb both the status and configuration registers, as 
well as other modules which are not covered in non-
destructive mode of operation. The action to be taken, 
(e.g. halt, re-configure, ignore, repeat, etc.), depends 
upon the Pass/Fail status, as well as the system / 
application code through which self-test is invoked. 
  
3.2 Internal and External Control for Self-test  
Various design considerations must be addressed for 
successful self-test operation. 

3.2.1 Design Considerations 
X intolerance: The BIST technique used requires the 
design to be free from functional as well as timing Xs. 
This is ensured through (i) appropriate bounding of X 
sources, including at the device inputs and outputs (I/Os), 
(ii) timing closure for all logic being BISTed, and (iii) 
skew balancing for clocks going to multiple modules in 
the design. The latter is important to avoid any 
asynchronous communication between modules which 
are being simultaneously BISTed. This also permits 
parallel operation of different modules, thereby saving on 
the test time, and providing greater flexibility of testing 
the inter-module and inter-clock domain logic [8]. 
 
Control of configuration and status registers: Updates 
should be controlled to prevent spurious over-writes due 
to reset or clock control changes during BIST operation 
and at the end of it. As examples, not using the internal 
reset nor internal clocks for the status register results in a 
more robust implementation. These registers must also be 
mapped onto the CPU addressable memory space for 
software control of the self-test operation. A protection 
mechanism in the form of keys is incorporated to prevent 
erroneous writes to the self-test configuration registers. It 
is necessary that these keys be unlocked first to get access 
to configurations registers. Two 32 bit keys were 
provided in this device to protect the unnecessary access 
to self-testing. 
 
At-speed clock control: Additional support is provided in 
this device for at-speed test using internal PLL clocks for 
at-speed captures. Both launch-off-shift (LOS) and 
launch-off-captures (LOC) patterns can be applied. LOS 
patterns are applied with the capture clocks aligned to 
permit test of logic in different clock domains 
simultaneously. This is illustrated in Figure 3. The 
benefits of these techniques have been presented in [8,9]. 
 
3.2.2 System and Application Considerations  
I/O pad control: Device I/Os are tri-stated to prevent 
random toggles with BIST patterns, thereby preventing 
spurious activity within it as well as in the other board 
level components. Additionally, quiescent values must be 
set through appropriate pull-up and pull-down control to 
prevent triggering of any activity with these patterns. 
 
Self-test indication: While the result of self-test is 
interpreted by the device software, it is important to 
provide adequate indication to the rest of the system 
about the availability of this device to accept functional 
requests, interrupts, etc. Also, a system level test function 
can be defined based on the indication obtain from 
different such devices. 
 
Self-test control: Important considerations here include 
the ability (i) to break self-loops during self-test, using 
reset control (as explained in Section 3.1), or through the 
use of a dedicated watchdog timer, (the latter forces a 



   

hard reset), (ii) to recover control at the end of self-test 
operation, and (iii) to take corrective measures based on 
the result of the self-test operation. 
 

Figure 3: At-speed clocking - Aligned capture clocks. 
 
 
4 Architecture and Implementation for 

Logic Self-Test 
Logic self-test has been implemented using 
deterministic BIST (DBIST) with re-seeding, from 
Synopsys, Inc. [10]. The specific implementation of the 
DBIST controller is driven by various considerations in 
the design and the overall objectives of maximizing the 
coverage with minimal test time and minimal test data 
volume. The block diagram for DBIST is shown in 
Figure 4. 
 
4.1 Enhancements to DBIST Architecture    for   
Self-test 
Several enhancements have been made to the DBIST 
architecture to support self-test through software. These 
include re-seeding through the device internal interface 
to the DBIST controller, user programmable pattern 
counter for each seed, internal clock selection and 
control for at-speed, internal signature storage and 
comparison, self-test control through 1149.1 JTAG 
interface, etc. [8].  
 
4.2 Descriptions of Self test Controller Modules  
Figure 5 shows the additional modules required to 
support self-test. These modules are explained. 
 
BIST protocol driver  module drives the BIST protocol 
to the DUT. 
Read-write controller module reads seeds and golden 
MISR signatures, and other configurations information 
from the internal RAM, and writes into the BIST 
CoDecs. 
Test mode controller module drives all hard macros 
and analog macros in ExTest to avoid MISR corruption. 
BIST progress tracker module keeps track of BIST 
execution in terms of number of seeds, etc. 

Watchdog timer module generates a timeout interrupt to 
master CPU, if the self-test operation does not complete 
within a user defined number of cycles.  
Configuration register file contains the BIST 
configuration information 
Status register file stores the status of self-test operation, 
e.g. Pass/Fail status, signature, etc., for each seed. 
Memory interface unit serves as the RAM interface to 
load seeds and signatures, and write them into the BIST 
CoDec. 

 
Figure 4:  DBIST architecture with self-test support. 

 
5 BIST and BISR for Memories 
Field test for memories has been implemented using a 
run-time programmable memory BIST solution (PBIST), 
(proprietary to Texas Instruments – Refer to Figure 6), 
has been used. In addition, a built-in self-analysis / self-
repair engine have also been designed to provide for 
memory repair. The repair solution described here 
nevertheless offers the added advantage of re-
configurability in case of failures in the field in an 
embedded application [11]. Self-test for memories can 
also be performed through standard test interface like 
JTAG or software control using CPU [12]. The repair 
solution is soft, since the redundancy allocation 
information has to be regenerated upon power on. 
 
5.1 Procedure for Memory Test  
The flow diagram for self-test and self-repair is shown in 
Figure 7. The steps include: 
Memory BIST activation by software: The application 
must set the BIST configuration registers for various 
algorithms which must be applied to individual memory 
cores. This information can be obtained from internal 
memory or can be supplied through an external interface. 
The memory BIST operation can also be destructive or 
non-destructive.  



   

 
Figure 5: Enhancements for self-test controller. 

 

 
Figure 6: Programmable BIST for memories. 

 

 
Figure 7: Flow for memory self-test and self-repair. 

 
Fail data analysis: Upon a failure, the BIST operation is 
halted. In the non-destructive mode, an interrupt is sent to  
the CPU or the external host to retrieve the fail data in the 
data logger unit and forward it to the data analyzer block 
for computing the repair solution. In the destructive 
mode, this information must be automatically latched into 
fail storage unit, which should also be accessible from the 
external host.  
To obtain repair solutions, Various analysis engines have 
been proposed, the popular ones being CRESTA and its 
derivatives [13,14]. (The memory considered for repair in 
this device had only redundant rows, and the basic 
CRESTA algorithm was used). The final solution is a 
bitmap which depicts the allocation of the spare resources 
(redundant rows / columns) to failing memory locations.  
 
Shifting new repair solution: The bitmap corresponding 
to the repair solution is shifted into the address mapping 
electrical fuse farm (and thereby over-riding the initial 
settings), which is programmed to hold the correct 
address map. Once the new repair solution is shifted, the 
BIST operation is resumed. In the case where all spare 
resources have been exhausted, and a new failure occurs, 
the BIST operation is aborted and the status register is 
updated. At the end, an interrupt is sent to the CPU. 
 
5.2 Design Considerations 
The considerations for successful field test of memories 
are similar to those for logic, described in Section 3.2. 
More specifically, for memories, additional care to be 
taken includes: 
(a) The entire BIST / BISR engine, including the CPU 

control and memories themselves must lie in one 
synchronous clock domain. 

(b) For non-destructive test, L1 and L2 caches must be 
treated properly in the self-test mode. During the test 
of L1 cache, CPU accesses to L1 cache must be 
prevented. During test of L2 cache and other program 
space, CPU cannot execute any program from these 
RAMs. The CPU must be prevented from accessing 
these memories in one of the following ways: (i) The 
CPU is halted. (ii) The program counter is set to a 
safe state, i.e. not in the targeted memories. (iii) The 
application code can discretely avoid this address 
space. 

 
5.3 Implementation of Memory Self-test  
The specific implementation on this device is shown in 
Figure 8. It depicts the interaction between the CPU, 
PBIST controller and data analyzer inside BISR block to 
arrive at a new repair solution. The CPU reads the fail 
information from the Fail Registers and sends it through 
its bus interface to the BISR data analyzer.  
 



   

6 Device overview 
The automotive device in which field testability has 
been incorporated is shown in Figure 9. The device has 
two CPUs. One is a C64x DSP core from Texas 
Instruments and the other is the ARM927 processor 
core. The ARM processor is the master CPU and 
provides the primary control function. The DSP core is 
the slave CPU and provides the primary compute 
function. Device self-test is performed by software 
running on the ARM processor. The PLL and clock 
control modules control and supply clocks to various 
parts of the device. All the self-test features 
implemented have been successfully tested in silicon 
and in the debugging / emulation environment around 
it. The device finds applications in navigation and 
telematics in the automotive space. This has motivated 
the development of the techniques described in this 
paper.  
 

 
Figure 8: System architecture for self-test and self-repair 

 

 
Figure 9: Device architecture. 

 

7 Conclusion 
This paper describes BIST implementation for logic and 
memories in an automotive SOC. Various design and test 
careabouts are explained, and it is shown how the 
implementation addresses them. It is shown how 
conventional BIST techniques have to be augmented to 
support the requirements of field test and repair. Other 
automotive designs in our design groups are also 
investigating the use of  additional DFT and test control 
mechanisms to support online testing where the normal 
and test modes are interleaved. 
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