

 A BIST Implementation Framework for Supporting Field Testability and
Configurability in an Automotive SOC

Amit Dutta, Srinivasulu Alampally, Arun Kumar and Rubin A. Parekhji
Texas Instruments, Bangalore, India.

Email:[amitd,srinu,arun.kumar,parekhji]@ti.com

Abstract
Built-in self-test techniques have been widely
researched and adopted for reasons of improvements in
test time and test cost, reduction in test resources
required for test of large chips with embedded cores,
and for field testability. While the adoption of these
techniques is becoming prevalent, there continue to be
challenges in making BIST solutions comprehensive to
meet several design and application constraints. This
paper describes the use of BIST implementations for
self-test of logic and memories in an automotive SOC,
(designed in Texas Instruments (India)), to support field
testability. Novel aspects of this solution include (i)
programmable coverage for logic, (ii) built-in self-
analysis and self-repair for memories, and (iii) support
for various system and application level interfaces for
field test. It is shown how conventional BIST techniques
must be augmented to provide test solutions in a system
context.

Keywords: Built-in self-test, built-in self-repair, field test,
system test, test interface control, software controlled test.

1 Introduction
The paradigm of one-time manufacturing test may be
questioned for three possible reasons: (i) The increasing
use of electronic components in safety critical systems
where periodic testing, including in the application on
the field, is recommended. (ii) The need to check the
operating parameters of the device during its use for
conformance to specifications, due to design variability
in deep sub-micron technologies. (iii) The increasing
inability to test for all defect models at time-zero
manufacturing tests, and the need to monitor their
influence during normal operation. These additional
requirements are driven by the need for high
dependability and low down-time in safety critical
systems. Several design methodologies at the chip and
system level have been proposed, leading to online
testing, error correction and fault tolerance [1,2,3].
These are based on code-space redundancy, compute
time redundancy, and module redundancy, and the
associated check mechanisms. Corrective measures are
based on this redundancy and check mechanisms, and
control the latency period in which recovery is possible.
In this paper, the design and implementation for field
self-test for logic and memories for an automotive
application SOC (system-on-chip), which has been
designed in Texas Instruments (India), using built-in
self-test (BIST) techniques, is described. While the

application of such BIST techniques is well-known
[4,5,6], the paper explains various chip, system and
application level considerations which must be addressed
to provide adequate controllability and observability
during field test. The main contributions of this work
include: (i) scaleable implementation solutions for
obtaining programmable coverage, (ii) built-in self-
analysis and self-repair for memories, and (iii) support for
various system and application level interfaces for field
test. Deterministic BIST with re-seeding is used for logic
self-test [7] and programmable memory BIST [6] for
memory self-test. It is shown how interfaces to
conventional BIST techniques must be augmented,
(together with the techniques themselves in some cases),
to realize field testability. (Only an off-line periodic test
solution with a fixed test schedule is considered in this
paper).

The paper is organized into seven sections. Section 2
provides an overview of system level self-test. Section 3
describes the procedure for logic self-test, together with
internal and external design considerations. The
architecture, and its corresponding implementation, are
explained in Section 4. Section 5 describes the procedure,
considerations and architecture / implementation for
memory self-test. Some device specific information is
provided in Section 6. Section 7 concludes the paper.

2 System Level Overview of Self-test
The ability and ease of ascertaining the status of a device,
whether it is functional or faulty, within an embedded
application, are determined by a few device and system
level parameters. These include:
(a) The type of tests performed, namely for static or

parametric faults, and the portion of the device
covered by the test.

(b) The test schedule, whether the test runs concurrently
with normal operation, (interleaved with normal
operation or self-checking [3]), or is run off-line non-
concurrently, either completely or in parts.

(c) The ability of the external environment to trigger the
test at different times, ascertain the duration of the
test and time of test completion, and the status of test
execution.

Item (a) above is device specific, item (b) depends upon
how the application runs on the device, and item (c)
depends upon the interface of the device to the rest of the
system. Based on these parameters, a few design and test

considerations emerge to successfully implement and
support field testability. These include:

(a) Support for power-on condition test through

hardware configuration and periodic test through
software configuration.

(b) Device specific test configuration, either through
test mode hardware or through CPU (central
processing unit – or processor) control through
software.

(c) Choice of test interface, either through internal
device functional or test bus, or through standard
external test interface (e.g. JTAG interface), or
standard external functional interface (e.g. USB or
other host interfaces),

(d) Storage of the hardware or software controlled test
configuration either as a fixed setup in a ROM or a
variable and programmable setup in a RAM.
(Various setup parameters are described together
with the implementation in Sections 4 and 6.
Examples include input seeds for stimuli
generation for logic, algorithms for test of different
memory cores and repair analysis, golden
signatures for response comparison, etc.).

Figure 1 illustrates the high level interface of the DUT
(device under test) to the system. It may be noted that
since the CPU may be used for test control, the device
configuration may or may not directly permit the CPU
and its associated memory to be tested at the same time.
Two different cases of self-test, therefore, emerge:

Non-destructive self-test (NDST): Here the test control
portion, (e.g. CPU and associated memory, or dedicated
test controller), of the DUT is not included in field test.
This provides greater flexibility of test scheduling and
sequencing, e.g. for periodic online testing, inter-leaved
testing, resumption of normal operation during test and

Figure 1: System level diagram for self test.

upon its completion. However, it is at the expense of
the loss of coverage of this module. (Normal operation

of power control or clock control logic is required for
correct test and hence these blocks are almost always left
out of the scope of such tests as well).

Destructive self-test (DST): Here the entire device is
tested, and as such, the test process is destructive.
Recovery to resume normal operation during test or at the
end of it is not possible. A standard procedure, e.g. warm
reset sequence, must be followed to read and analyze the
results of the test and take corrective measures. The state
of the DUT is lost, and a re-start of the application, (e.g.
CPU boot), is required. (In this device, the self-test
implementation is destructive).

3 Design for Logic Self-test
There are various ways to successfully implement logic
self-test in a device. The generic self-test procedure,
along with generic design and application level
considerations, are presented here.

3.1 Self-test Procedure
The procedure for carrying out logic self-test in the field
is based on a common software and architectural
protocol. This is illustrated in Figure 2. The steps are
explained below.

Reset control: Upon a successful power-on and reset
sequence, the CPU operation is activated. Its bootstrap
values are loaded by latching values on the device input
pins upon an external reset, or through the default boot
control register configuration. As part of this boot
sequence, the self-test mode is checked. If enabled, self-
test is executed internally as part of this power-on
sequence. Self-test can also be executed through an
external interface (e.g. JTAG, USB, etc.), after the CPU is
halted. Both the internal or external modes of self-test
operation can also be invoked through application code
either from ROM or RAM. (In this design, a RAM based
solution has been implemented).

Status register check: In the self-test routine, the
completion of status register is first checked. If it is set,
then the results of the previous (just completed) self-test
operation are read. If not, it is an indication to begin a
new self-test operation. This check prevents the device
from entering into a self-loop, and de-couples the internal
self-test operation and application code.

Self-test configuration: The association data and control
for self-test are set, (fixed in ROM or loaded through
CPU or external interface into RAM), in various
configuration registers. These include different seed
values, corresponding pattern count numbers and
resulting golden signatures, and at-speed PLL clock
control settings for different test modes. Such a variety in
the configuration allows different coverage numbers to be

targeted through different tests (stuck-at, transition,
etc.) through varying number of seeds and pattern
counts.

Figure 2: Procedure for logic self-test.

This is a significant advantage of re-seeding based
BIST techniques and internal clocks [7,8].

Pass/Fail status generation: At the end of each phase
of self-test, the resulting signature is stored in the status
register as well as compared with the golden signature.
At the end of all the phases, the Pass/Fail information
is captured into the status register.

Resumption after self-test: This can be done through an
external or internal reset. Care must be taken not to
disturb both the status and configuration registers, as
well as other modules which are not covered in non-
destructive mode of operation. The action to be taken,
(e.g. halt, re-configure, ignore, repeat, etc.), depends
upon the Pass/Fail status, as well as the system /
application code through which self-test is invoked.

3.2 Internal and External Control for Self-test
Various design considerations must be addressed for
successful self-test operation.

3.2.1 Design Considerations
X intolerance: The BIST technique used requires the
design to be free from functional as well as timing Xs.
This is ensured through (i) appropriate bounding of X
sources, including at the device inputs and outputs (I/Os),
(ii) timing closure for all logic being BISTed, and (iii)
skew balancing for clocks going to multiple modules in
the design. The latter is important to avoid any
asynchronous communication between modules which
are being simultaneously BISTed. This also permits
parallel operation of different modules, thereby saving on
the test time, and providing greater flexibility of testing
the inter-module and inter-clock domain logic [8].

Control of configuration and status registers: Updates
should be controlled to prevent spurious over-writes due
to reset or clock control changes during BIST operation
and at the end of it. As examples, not using the internal
reset nor internal clocks for the status register results in a
more robust implementation. These registers must also be
mapped onto the CPU addressable memory space for
software control of the self-test operation. A protection
mechanism in the form of keys is incorporated to prevent
erroneous writes to the self-test configuration registers. It
is necessary that these keys be unlocked first to get access
to configurations registers. Two 32 bit keys were
provided in this device to protect the unnecessary access
to self-testing.

At-speed clock control: Additional support is provided in
this device for at-speed test using internal PLL clocks for
at-speed captures. Both launch-off-shift (LOS) and
launch-off-captures (LOC) patterns can be applied. LOS
patterns are applied with the capture clocks aligned to
permit test of logic in different clock domains
simultaneously. This is illustrated in Figure 3. The
benefits of these techniques have been presented in [8,9].

3.2.2 System and Application Considerations
I/O pad control: Device I/Os are tri-stated to prevent
random toggles with BIST patterns, thereby preventing
spurious activity within it as well as in the other board
level components. Additionally, quiescent values must be
set through appropriate pull-up and pull-down control to
prevent triggering of any activity with these patterns.

Self-test indication: While the result of self-test is
interpreted by the device software, it is important to
provide adequate indication to the rest of the system
about the availability of this device to accept functional
requests, interrupts, etc. Also, a system level test function
can be defined based on the indication obtain from
different such devices.

Self-test control: Important considerations here include
the ability (i) to break self-loops during self-test, using
reset control (as explained in Section 3.1), or through the
use of a dedicated watchdog timer, (the latter forces a

hard reset), (ii) to recover control at the end of self-test
operation, and (iii) to take corrective measures based on
the result of the self-test operation.

Figure 3: At-speed clocking - Aligned capture clocks.

4 Architecture and Implementation for

Logic Self-Test
Logic self-test has been implemented using
deterministic BIST (DBIST) with re-seeding, from
Synopsys, Inc. [10]. The specific implementation of the
DBIST controller is driven by various considerations in
the design and the overall objectives of maximizing the
coverage with minimal test time and minimal test data
volume. The block diagram for DBIST is shown in
Figure 4.

4.1 Enhancements to DBIST Architecture for
Self-test
Several enhancements have been made to the DBIST
architecture to support self-test through software. These
include re-seeding through the device internal interface
to the DBIST controller, user programmable pattern
counter for each seed, internal clock selection and
control for at-speed, internal signature storage and
comparison, self-test control through 1149.1 JTAG
interface, etc. [8].

4.2 Descriptions of Self test Controller Modules
Figure 5 shows the additional modules required to
support self-test. These modules are explained.

BIST protocol driver module drives the BIST protocol
to the DUT.
Read-write controller module reads seeds and golden
MISR signatures, and other configurations information
from the internal RAM, and writes into the BIST
CoDecs.
Test mode controller module drives all hard macros
and analog macros in ExTest to avoid MISR corruption.
BIST progress tracker module keeps track of BIST
execution in terms of number of seeds, etc.

Watchdog timer module generates a timeout interrupt to
master CPU, if the self-test operation does not complete
within a user defined number of cycles.
Configuration register file contains the BIST
configuration information
Status register file stores the status of self-test operation,
e.g. Pass/Fail status, signature, etc., for each seed.
Memory interface unit serves as the RAM interface to
load seeds and signatures, and write them into the BIST
CoDec.

Figure 4: DBIST architecture with self-test support.

5 BIST and BISR for Memories
Field test for memories has been implemented using a
run-time programmable memory BIST solution (PBIST),
(proprietary to Texas Instruments – Refer to Figure 6),
has been used. In addition, a built-in self-analysis / self-
repair engine have also been designed to provide for
memory repair. The repair solution described here
nevertheless offers the added advantage of re-
configurability in case of failures in the field in an
embedded application [11]. Self-test for memories can
also be performed through standard test interface like
JTAG or software control using CPU [12]. The repair
solution is soft, since the redundancy allocation
information has to be regenerated upon power on.

5.1 Procedure for Memory Test
The flow diagram for self-test and self-repair is shown in
Figure 7. The steps include:
Memory BIST activation by software: The application
must set the BIST configuration registers for various
algorithms which must be applied to individual memory
cores. This information can be obtained from internal
memory or can be supplied through an external interface.
The memory BIST operation can also be destructive or
non-destructive.

Figure 5: Enhancements for self-test controller.

Figure 6: Programmable BIST for memories.

Figure 7: Flow for memory self-test and self-repair.

Fail data analysis: Upon a failure, the BIST operation is
halted. In the non-destructive mode, an interrupt is sent to
the CPU or the external host to retrieve the fail data in the
data logger unit and forward it to the data analyzer block
for computing the repair solution. In the destructive
mode, this information must be automatically latched into
fail storage unit, which should also be accessible from the
external host.
To obtain repair solutions, Various analysis engines have
been proposed, the popular ones being CRESTA and its
derivatives [13,14]. (The memory considered for repair in
this device had only redundant rows, and the basic
CRESTA algorithm was used). The final solution is a
bitmap which depicts the allocation of the spare resources
(redundant rows / columns) to failing memory locations.

Shifting new repair solution: The bitmap corresponding
to the repair solution is shifted into the address mapping
electrical fuse farm (and thereby over-riding the initial
settings), which is programmed to hold the correct
address map. Once the new repair solution is shifted, the
BIST operation is resumed. In the case where all spare
resources have been exhausted, and a new failure occurs,
the BIST operation is aborted and the status register is
updated. At the end, an interrupt is sent to the CPU.

5.2 Design Considerations
The considerations for successful field test of memories
are similar to those for logic, described in Section 3.2.
More specifically, for memories, additional care to be
taken includes:
(a) The entire BIST / BISR engine, including the CPU

control and memories themselves must lie in one
synchronous clock domain.

(b) For non-destructive test, L1 and L2 caches must be
treated properly in the self-test mode. During the test
of L1 cache, CPU accesses to L1 cache must be
prevented. During test of L2 cache and other program
space, CPU cannot execute any program from these
RAMs. The CPU must be prevented from accessing
these memories in one of the following ways: (i) The
CPU is halted. (ii) The program counter is set to a
safe state, i.e. not in the targeted memories. (iii) The
application code can discretely avoid this address
space.

5.3 Implementation of Memory Self-test
The specific implementation on this device is shown in
Figure 8. It depicts the interaction between the CPU,
PBIST controller and data analyzer inside BISR block to
arrive at a new repair solution. The CPU reads the fail
information from the Fail Registers and sends it through
its bus interface to the BISR data analyzer.

6 Device overview
The automotive device in which field testability has
been incorporated is shown in Figure 9. The device has
two CPUs. One is a C64x DSP core from Texas
Instruments and the other is the ARM927 processor
core. The ARM processor is the master CPU and
provides the primary control function. The DSP core is
the slave CPU and provides the primary compute
function. Device self-test is performed by software
running on the ARM processor. The PLL and clock
control modules control and supply clocks to various
parts of the device. All the self-test features
implemented have been successfully tested in silicon
and in the debugging / emulation environment around
it. The device finds applications in navigation and
telematics in the automotive space. This has motivated
the development of the techniques described in this
paper.

Figure 8: System architecture for self-test and self-repair

Figure 9: Device architecture.

7 Conclusion
This paper describes BIST implementation for logic and
memories in an automotive SOC. Various design and test
careabouts are explained, and it is shown how the
implementation addresses them. It is shown how
conventional BIST techniques have to be augmented to
support the requirements of field test and repair. Other
automotive designs in our design groups are also
investigating the use of additional DFT and test control
mechanisms to support online testing where the normal
and test modes are interleaved.

References
[1] E.J. McCluskey and S. Mitra, “Fault-Tolerance”, in

Encyclopedia on Computer Science and Engineering, CRC
Press, 2004.

[2] D.P.Siewiorek and R.S.Swarz, Theory and Practice of
Reliable System Design, Digital Press, 1982.

[3] J.Wakerly, Error Detecting Codes, Self-Checking Circuits
and Applications, Elsevier North Holland, Inc., 1978.

[4] I.Voyiatzis, A.Paschalis, D.Gizopoulos, H.Kranitis, C.
Halatsis, “A concurrent built-in self-test architecture based
on a self-testing RAM”, IEEE Trans. on Reliability, March
2005.

[5] C.Stroud, A Designer's Guide to Built-In Self-Test, Kluwer
Academic Publishers, 2002.

[6] R.D.Adams, High Performance Memory Testing: Design
Principles, Fault Modelling and Self-Test, Kluwer
Academic Publishers, 2002.

[7] P.Wohl, J.Waicukauski, S.Patel and M.Amin, "Efficient
Compression and Application of Deterministic Patterns in a
Logic BIST Architecture", Design Automation Conf.,
2003, pp. 566-569.

[8] S.Jain, J.Abraham, S.Vooka, S.Kale, A.Dutta and
R.Parekhji, “Enhancements in Deterministic BIST
Implementations for Improving Test of Complex SOCs”,
Intl. Conf. VLSI Design, 2007.

[9] S.Goel and R.A.Parekhji, “Choosing the Right Mix of At-
speed Structural Test Patterns: Comparisons in Pattern
Volume Reduction and Fault Detection Efficiency”, Asian
Test Symp., 2005.

[10] Synopsys, Inc., SoCBIST Deterministic Logic BIST
User Guide. Version V-2005.09, 2005.

[11] Y.Zorian, S.Shoukourian, “Embedded-Memory Test and
Repair: Infrastructure IP for SoC Yield”, IEEE Design and
Test of Computers, Vol. 20, 2003, pp.58-66.

[12] J.Dreibelbis, J.Barth, H.Kalter, R.Kho, “Processor-based
built-in self-test for embedded DRAM”, Journal of Solid-
State Circuits, 1998, Vol.21, pp. 71-89

[13] T. Kawagoe, J. Ohtani, M. Niiro, T. Ooishi, M. Hamada,
Hidaka, “A Built-in Self-Repair Analyzer (CRESTA) for
Embedded DRAMs”, Intl. Test Conf. 2000,pp.567-574.

[14] S.Thakur, R.Parekhji, A.Chandorkar, “On-chip Test and
Repair of Memories for Static and Dynamic Faults”, Intl.
Test Conf. 2006

