#### FPGA Hardware Implementation of Statically-Derived Application-Aware Error Detectors

Peter Klemperer, Shelley Chen\*, Karthik Pattabiraman, Zbigniew Kalbarczyk, Ravishankar Iyer University of Illinois at Urbana-Champaign \*SAIC, Champaign, IL.

## Motivation

- Nano-regime new types/severity of errors.
- Traditional solutions expensive.
- One size fits all approach not appropriate.
- Low cost and high coverage.
- Application-aware techniques.
- Hardware implementation.







## Hardware Implementation

- Static Detector Module (SDM) provides:
  - Recomputation
  - Checking
- SDM Sub-modules:
  - Path Tracking
  - Error Checking
- Commit unit access.
- Register file access.
- Direct memory access.



### Performance Evaluation - Setup

- Software executes on superscalar DLX.
- dlxcc generates dlx assembly.
- VHDL simulations of the system (processor + checking) in ModelSim 6.2.
- Hardware synthesis for Xilinx Virtex-2 Pro FPGA with Xilinx ISE 7.1 toolflow.
- Simulation results validated against hardware.

# **Performance Evaluation**

| Performance                     | Cycles  | Performance<br>Overhead |
|---------------------------------|---------|-------------------------|
| No<br>Instrumentation           | 30,067  | -                       |
| SW Static-<br>Detector Module   | 136,607 | 354%                    |
| HW Static-<br>Detector Module   | 57,411  | 91%                     |
| Static-Detector<br>Module w/DMA | 30,688  | 2%                      |

| Synthesis                        | Slices | Max Frequency |
|----------------------------------|--------|---------------|
| DLX                              | 12,262 | 76 MHz        |
| DLX + Static-<br>Detector Module | 12,533 | 77 MHz        |

Significant performance savings over software duplications. Path tracking provided with minimal overhead. **DMA** significantly increases checking performance. Minimal area overhead Maximum clock frequency not affected.

# **Conclusions and Future Work**

- Significant performance savings.
- Low area overhead.
- Diversity in hardware computation units.
- Future Work:
  - Expansion to larger benchmarks.
  - Performance and resource feedback for detector optimization.