
  

ReSIST: Resilience for Survivability in IST 

A European Network of Excellence 

Contract Number: 026764 

 
 

Deliverable D33: Resilience-Explicit Computing: final 
 
 Report Preparation Date: December 2008 
 Classification: Confidential 
 
 Contract Start Date: 1st January 2006 
 Contract Duration: 39 months 
 Project Co-ordinator: LAAS-CNRS 
 Partners:  Budapest University of Technology and Economics 
  City University, London 
  Technische Universität Darmstadt 
  Deep Blue Srl 
  Institut Eurécom 
  France Telecom Recherche et Développement 
  IBM Research GmbH 
  Université de Rennes 1 – IRISA 
  Université de Toulouse III – IRIT 
  Vytautas Magnus University, Kaunas 
  Fundação da Faculdade de Ciencas da Universidade de Lisboa 
  University of Newcastle upon Tyne 
  Università di Pisa 
  QinetiQ Limited 
  Università degli studi di Roma  “La Sapienza” 
  Universität Ulm 
  University of Southampton 
 
 

  
 



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 3 

Contents 
1 Introduction..........................................................................................................5 

1.1 Resilience-Explicit Computing ......................................................................5 
1.2 Approach.......................................................................................................6 
1.3 Report Structure ............................................................................................7 

2 Second Edition Resilience Mechanisms................................................................7 
3 Challenge Workshops...........................................................................................8 

3.1 Resilience-Explicit Computing in Grids.........................................................9 
3.2 Resilience-Explicit Computing in Critical National Infrastructures ................9 
3.3 Resilience-Explicit Computing with Assistive Technologies........................10 

4 Report summary.................................................................................................10 
4.1 Resilience-Explicit Mechanisms ..................................................................10 
4.2 Challenge Workshops..................................................................................11 

Annex 1: Second Edition Mechanism Descriptions ..................................................13 
Annex 2: Reports from Challenge Workshops..........................................................19 





026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 5 

1 Introduction  
 
This report forms part of Deliverable D33, from ReSIST Work Package 1 (Integration 
Technologies). In accordance with the Programme of Work (D22), the deliverable is:  

 a second edition on support for resilience explicit computing, covering the 
augmentation and enhancement of the RKB, and reporting on the challenge 
problem workshops. 

The report is an update to Deliverable D11 - Support for resilience-explicit computing 
(first edition), which demonstrated “how resilience mechanisms can be represented in 
terms of resilience metadata” and described the “extended resilience ontology, with 
reference to the content and organisation of the validated knowledge base.” 

In common with the first edition Deliverable D11, this deliverable has two 
components. First, the augmented ReSIST Resilience Knowledge Base (RKB) 
contains “second edition” descriptions of resilience mechanisms in terms of resilience 
metadata, based on the ReSIST resilience ontology. These descriptions include 
extensive coverage (at an overview level) of techniques described in IEC 61508 (Part 
7). The second component is a summary report on the three challenge problem 
workshops held during 2008, reviewing the aims of each workshop, the participating 
organisations, issues covered and next steps.  

1.1 Resilience-Explicit Computing  
A full description of Resilience-Explicit Computing is provided in Deliverable D11. 
To summarise, the resilience-explicit (Res-Ex) approach aims to support the 
achievement and prediction of system resilience by making explicit the resilience-
related properties of components and infrastructure. These properties are described in 
terms of metadata, which can be used at design time to inform decisions about the 
choice of design patterns and development tools, or potentially at run-time to tune or 
reconfigure, maintaining resilience.  

We use the term resilience-explicit computing to encompass both the design-
time and run-time use of resilience-related metadata. Res-Ex computing requires 
effective descriptions of metadata and of the mechanisms that may be deployed or 
configured in order to meet a resilience target. We use the term resilience mechanism 
to refer to any design pattern, technique or tool intended to improve system resilience. 
Examples include fault-tolerant architectural patterns (e.g. n-version programming) 
and development tools (e.g. robustness testing tools).  

We use the term metadata to refer to resilience information, about components 
or mechanisms, on which human or machine decision-makers act. Potential metadata 
range from a person’s workload in a socio-technical system to known failure modes 
declared in the functional specification of a system. Such metadata could be perceived 
by an observer, and could be predicted or historical. The metadata could also be 
declared at different levels in the system, such as components, the whole system or 
even for the user-interface of the system.  

We seek to inform the decisions to select a particular resilience mechanism from 
among alternatives and to instantiate or configure the mechanism for a specific 
application. Such decisions may be made statically, at design time, or implemented 
dynamically within a running system. In either case, in order to plan to reach a 



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 6 

resilience target, the decision-maker requires metadata about the characteristics (e.g., 
failure rates) of components, infrastructure and environment, and descriptions of the 
resilience mechanisms in terms of their effects on metadata, for example failure rate 
of a fault tolerant assembly in terms of failure rates of its components, or metadata 
generated by a robustness testing tool. The resilience mechanism descriptions may be 
combined with system metadata to obtain a prediction of the consequences of a 
particular selection or configuration. 

The goal of our work in ReSIST has been to encourage the community to give 
descriptions of mechanisms and metadata that support these decision-making 
processes. In particular, we wish to promote the contribution of mechanism 
descriptions in a form that might enable automated analysis. There is currently very 
little support for gathering such descriptions or for making use of them. The 
descriptions of resilience mechanisms available to practitioners at present are deeply 
embedded in the scientific literature and are in many cases hard to extract. We wish to 
encourage researchers developing new mechanisms to give descriptions that help 
answer the question “What exactly does this mechanism achieve in terms of 
resilience?” We hope thereby to encourage research to evaluate existing and new 
mechanisms, and scholarship in codifying that information and making it readily 
available to practitioners.  

The work of ReSIST Task IT-T2 has been to develop a means of recording 
descriptions of resilience mechanisms that are based on metadata and which integrate 
with the Resilience Knowledge Base (RKB). This allows mechanism descriptions to 
be linked to other resilience knowledge through the emerging ontologies and through 
the research and training/education data embedded in the RKB.  
 

1.2 Approach  
In order to make progress towards our goal of providing resilience-explicit guidance 
for the developer community, our aim was to provide metadata-based descriptions of 
a large number and wide range of resilience mechanisms. To this end we asked 
specialists across the ReSIST network to provide a preliminary and broad-ranging set 
of “first edition” descriptions. The mechanism descriptions provided were described 
in Deliverable D11.  

A “second edition” set of additional mechanisms have been contributed by 
Network partners, augmented by outline descriptions of techniques listed in 
IEC61508 Part 7, a list of techniques specifically related to safety. The complete set 
of mechanism descriptions now available is described in overview in Section 2, and 
these have all been included in the on-line Resilience Knowledge Base (RKB). This is 
accessible to readers at http://resist.ecs.soton.ac.uk/resex/. 

 The resulting set of mechanisms provides an extension of the content of the RKB, 
but it is also necessary to extend our understanding of how the mechanism 
descriptions can contribute to more effective design and development for resilient 
systems. 

To help us to begin to develop our understanding, the second strand of work in 
Task IT-T2 has been to hold a series of workshops centred on a set of “challenge 
problems”. Preparation for each workshop delineated the topic and a core of ReSIST 
participants; the workshops were then opened (via the ResEx SIG) to all of the 



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 7 

ReSIST partners and to any identified external participants with a close interest in the 
designated topic.  

Three workshops were held during 2008-09: “Challenge Problems for Resilience-
Explicit Computing in Grids”, held at Pisa, July 2008; “Challenge Problems for 
Resilience-Explicit Computing in Critical National Infrastructures”, held at Malvern, 
November 2008; and “Challenge Problems for Resilience-Explicit Computing with 
Assistive Technologies”, held at Newcastle, December 2008. 
The generic objectives for the workshops were to establish working groups that could 
explore: 

• how resilience meta-data could be exploited at design-time and/or run-time 
• how resilience mechanism descriptions in the RKB could be utilised 
• how meta-data and descriptions might be enhanced for greater effectiveness, 

and 
• how to focus future research towards techniques and tools for modelling, 

analysis, design and implementation of resilience-explicit systems. 

1.3 Report Structure 
This report is a guide to the second edition mechanism descriptions and a summary of 
the efforts of the ResEx Challenge Workshops. Section 2 indicates the mechanisms 
that have been incorporated at this stage (these are enumerated in Annex 1). Full 
information on the Resilience-Explicit mechanism descriptions is stored in the on-line 
RKB (http://resist.ecs.soton.ac.uk/resex/). Section 3 provides a summary of the aims 
and operation of each of the three Challenge Workshops. Finally, in Section 4 we 
summarise, and look forward to future work beyond the ReSIST project, aimed at 
maintaining the legacy of the RKB mechanism descriptions and promoting the 
working groups to develop the Challenge Problem definitions.  

2 Second Edition Resilience Mechanisms  
In this section, we review the collection of example mechanisms included in the 
second edition of the Res-Ex support embedded in the RKB. The first edition 
mechanisms were initially offered by members of the Res-Ex SIG and, later, by other 
ReSIST partners. The collection included classical architectural mechanisms such as 
n-version programming, dynamic mechanisms such as dynamic function allocation, 
and design-time tools such as ModelWorks.  They represent contributions from each 
of the initial ReSIST Working Group areas in resilience building (Architectures, 
Algorithms, Socio-technical systems, Verification and Evaluation).  

Our second edition content aimed to address gaps in the coverage provided by the 
first edition sample. A list of candidate second edition mechanisms was developed 
with the aim of increasing the involvement of a broader group of ReSIST partners and 
improving the coverage of mechanisms across working groups in the ReSIST network. 
A number of these mechanisms have been described either in full or in outline. In 
addition, relevant safety-related techniques listed in IEC 61508 Part 7 (Overview of 
techniques and measures) have been added at an “outline” level of detail. IEC 61508 
is the international standard for electrical, electronic and programmable electronic 
safety related systems. Part 7 lists techniques and measures to support the process of 
ensuring that systems are designed, implemented, operated and maintained to provide 
the required safety integrity level (SIL).  



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 8 

As a result of this effort, the total number of mechanisms included in the second 
edition is close to 160, with 24 of these having a complete description. The range of 
contributors to the mechanisms has increased, with seven of the ReSIST partners 
providing mechanism descriptions. Annex 1 to this report provides a full list of the 
second edition mechanisms. 

3 Challenge Workshops 
A conclusion of the initial deliverable on Resilience-Explicit Computing was that, 
alongside ongoing research in the realisation of support for a Res-Ex approach, there 
is a need for greater understanding and experience of the approaches along with their 
successful integration. To support this, the final stage of ReSIST work on Res-Ex 
computing aimed at initiating development of a series of challenge problems, 
including applications that required the run-time use of metadata to support dynamic 
reconfiguration for resilience. The development of the challenge problems was 
expected to deliver insight into the need for and role of metadata, and to provide a 
driver by which we hope to advance and integrate research. 

The challenge problems are intended to serve as benchmarks for researchers and 
developers of tools supporting the design process or providing dynamic 
reconfiguration capabilities. Each is based on a specific application area. The three 
workshops to develop the challenge problems were all held in 2008: 

• “Challenge Problems for Resilience-Explicit Computing in Grids”, held at the 
University of Pisa, Italy, 14 July 2008 

• “Challenge Problems for Resilience-Explicit Computing in Critical National 
Infrastructures”, held at Qinetiq, Malvern, UK, 20-21 November 2008 

• “Challenge Problems for Resilience-Explicit Computing with Assistive 
Technologies”, held at Newcastle University, UK, 5 December 2008 

Each workshop was attended by co-ordinators of Res-Ex work (Tom Anderson and 
Steve Riddle), and organised by a local host. The approach proposed for defining a 
challenge problem was common to all workshops: 

• to select a problem (or small set of problems) which would fit the aims of 
ResEx;  

• to create a problem statement that encompasses functional and dependability 
properties; 

• to consider the range of conventional resilience/dependability design 
approaches that have been employed;  

• to select one or more mechanisms to incorporate/achieve dependability, and 
convert these to a ResEx approach by developing a ResEx mechanism 
descriptor; 

• to deploy the ResEx approach, by identifying the strengths and weaknesses of 
the ResEx description, determining the effectiveness of role of metadata and 
recording the experience of utilising ResEx approach, noting strengths and 
limitations; 

• to establish membership of an ongoing, active workgroup. 
The final bullet in this list is perhaps the most essential since a single workshop 
meeting could only prepare for and instigate the process outlined above. 



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 9 

3.1 Resilience-Explicit Computing in Grids  
The Pisa workshop was organised by Cinzia Bernardeschi and Andrea Domenici.  

The motivation for study of grids originated from discussions at a Res-Ex 
workshop in late 2007. In a production Grid, resilience is a property that is required 
both for the infrastructure itself and of the Grid services or mechanisms that 
applications may use to satisfy their own resilience requirements. The nature of the 
Grid demands availability of a large number of resources, resource virtualisation, 
brokering services and data replication. Tools such as GridView and SAM provide 
monitoring services and reliability metrics which can provide a valuable source of 
metadata for long-term and dynamic analysis of resilience properties. Thus it was 
expected that resilience-related properties and mechanisms of Grid infrastructures 
could be feasibly characterised in terms of the ReSIST ontology, and related to ResEx 
mechanisms.   

Attendees at the workshop included representatives of ReSIST partners (Pisa, 
Malvern, Southampton, Newcastle) and domain experts (CERN, INFN). The domain 
experts, including members of the team responsible for the Large Hadron Collider, 
were able to give valuable insights into the stringent reliability and availability 
requirements for Grid infrastructure. A working group was established to continue the 
collaboration among the participants. One of its commitments was to produce a 
document summarizing known Resilience-explicit mechanisms that could be applied 
in Grid computing. The workshop report presented in Annex 2 to this report is an 
output from that commitment. 

3.2 Resilience-Explicit Computing in Critical National 
Infrastructures 

The Malvern workshop was organised by Nick Moffat and Colin O’Halloran 
(QinetiQ). The aim was to bring together people from the communities of Resilience 
and Security. Critical National Infrastructures (CNIs) include transport networks, 
utilities, emergency services and telecommunications. The workshop focussed on 
possible threats and security challenges to CNIs and, as with the other workshops, 
sought to identify a challenge problem and establish a working group.  

A particular focus of the workshop was a discussion of possible electronic attack 
vectors against Critical National Infrastructure. Specific sectors addressed were 
Energy, Food, Water, Transport, Communications, Government, Health, Emergency 
Services and Finance. These sectors correspond with the classification by the UK 
Centre for Protection of National Infrastructure. Discussion concluded that the most 
effective attacks can be those that adversely impact public perceptions, and that 
modelling of security may be difficult due to the wide variety of complex factors 
relevant to typical national systems. Other topics included security modelling tools 
and their representation as a resilience mechanism, and the role of semantic web-
based tools for information discovery in the context of terrorist incident reports. 

Attendees at the workshop included representatives from Newcastle, Southampton 
and QinetiQ, St Andrew’s University, and practitioners from the Centre for the 
Protection of National Infrastructure. Planned follow-up activities included the setting 
up of an email forum to include a wider range of participants throughout the UK and 
mainland Europe who had not been able to attend the workshop, and the arrangement 
of a follow-up workshop to further expose resilience and modelling techniques to 



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 10 

practitioners, and to make use of the Resilience Ontology work in collaboration with 
related projects. 

The full workshop report is presented in Annex 2.  

3.3 Resilience-Explicit Computing with Assistive 
Technologies 

The Newcastle workshop was organised by Steve Riddle and Patrick Olivier 
(Newcastle University). Its aim was to bring together researchers and practitioners 
from the communities of Resilience and Assistive Technologies. 

The field of Assistive Technology covers a wide range of technologies designed to 
support “independent living”: that is, the ability to take part in normal, day-to-day 
activities in spite of infirmity brought on by age, disease or disability. Examples 
include support for medication, diet and nutrition; personal mobility; and virtual 
communities. Each of these examples has significant potential risks to individual 
safety and security: these include danger of overdose, falls or other accidents, and 
phishing attacks. 

Attendees at the workshop came from ReSIST partners (Newcastle, Southampton, 
Birkbeck) and domain experts (Centre of Excellence for Life Sciences, and University 
of Dundee). The workshop was structured with introductory presentations followed 
by a specially filmed video, featuring actors in a scenario highlighting many of the 
problems in Assistive Technology. The workshop concluded with breakout groups 
discussing one of four case studies, as potential sources of material for a Challenge 
Problem. The full workshop report is presented in Annex 2. 

4 Report summary 
The overall objective for the ResEx work in ReSIST is very much for the long term: 
to build up our capability for designing and developing resilient systems by more 
effectively deploying architectures, components, on-line processes and supportive 
methodologies that exploit the resilience-explicit approach.  In the third and final year 
of ReSIST we set the dual objective of expanding the scope of our coverage of 
“resilience mechanisms” in the RKB, and of initiating a programme of challenge 
workshops that would investigate, explore and refine the ways in which the ResEx 
approach can contribute. 

4.1 Resilience-Explicit Mechanisms 
Thanks to a much improved input facility and template, supported by appropriate 
guidance information, we were able to double the number of mechanisms that are 
described in detail to 24. It will always be possible to improve the description of a 
mechanism, especially if subsequent investigation and study provides better, and 
ideally quantified, information on the resilience parameters of the mechanism. The 
opportunity for future upgrading of mechanisms is an obvious follow-on capability 
that continued availability of the RKB will naturally support. 

In addition to the fully described mechanisms, there are now a number of partially 
completed mechanisms within the RKB. Basically, these are descriptions for which 
readily available information has been inserted, but for which completion of all 
remaining fields would entail a more significant investigation. With limited resources 



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 11 

available we concentrated our effort on broadening and extending coverage rather 
than ensuring that all descriptions were completed. 

It was suggested that the international safety standard IEC 61508 enumerated a 
breadth of safety related “mechanisms”. Since this defined a valuable and wide-
ranging corpus of mechanisms in which system developers would have a natural 
interest, we thought these mechanisms would be a valuable addition to the RKB. Our 
aim here was to include all suitable/relevant entries from part 7 of the standard, and 
that has been done. Many of the entries follow an outline format, which basically 
gives the name of the mechanism, and a short description of what it is and what it 
does but will normally include a link to some other, external, source of more detailed 
information. In some cases we have been able to extend these outlines to partially 
completed descriptions by adding information in many of the supplementary fields of 
the template. 

Once again, the continued availability of the RKB affords the opportunity to 
elaborate more fully all of the outline and partial descriptions – and, indeed, to further 
extend the coverage by adding new mechanisms. Two obvious possibilities for 
strengthening the RKB’s capability with respect to resilience mechanisms, in terms of 
review and improvement, in completion of partial descriptions, and in adding new 
mechanisms is via 

(i) student exercises (advanced undergraduate/postgraduate/doctoral students 
can all have a role here), and 

(ii) within the future programmes of the challenge workshops. 

The quantified status of the RKB with respect to resilience mechanisms is subject 
to change, since we are trying to maintain an ongoing, but now small-scale, 
programme of development. However, we can record that in early March 2009 the 
total number of mechanisms included was just below 160. 

4.2 Challenge Workshops 
 
The resilience-explicit approach needs considerable further investigation before 
anything that could be considered a methodical development regime can be 
recommended. Nevertheless the approach has obvious merit, in that it proposes that 
decisions at design time and runtime should be rationally based on an analysis of 
resilience capabilities and characteristics. Converting this potential into a realizable 
engineering benefit will require insight and experience – which should be derived 
from investigation and (ideally) empirical studies. The proposed challenge workshops 
were intended to initiate this process. 

We envisaged a modest number of workshops, and succeeded in holding three. 
We wanted these to be in diverse application domains, one in the mainstream of 
dependability (grid computing and services was selected), one in security (we chose 
critical national infrastructures) and one that related to the ambient model of future 
IST (for this we chose assistive technologies). Each workshop had the same set of 
objectives: 

1. to bring together resilience specialists and domain experts; 
2. to select one (or more) candidate problems; 
3. to compare current resilience practice with a resilience-explicit approach; 
4. to consider how resilience metadata about mechanisms might help; 



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 12 

5. to establish a legacy working group. 
 
It should be fairly clear that meeting all of these objectives in full at a single first 
meeting was a little unrealistic, and this proved to be the case at all three workshops. 
But in each case there was solid success on the key objectives, namely numbers 1 and 
5. Success on objective 1 was realized in terms of extremely positive and constructive 
interaction between the two camps (resilience and domain) at each of the three 
workshops. [This was particularly gratifying for the overall WP1 coordinators and for 
the individual workshop organizers.] Success on objective 5 was realized in terms of 
setting up champions for a future thread of activity and designating individuals 
present at the workshops as champions to take these matters forward. 

The remaining objectives (2-4) were discussed at varying levels of detail at the 
separate workshops and, although no firm conclusions were determined, the 
discussions will inform the future deliberations of the working groups – which we 
hope will have a lasting presence, will take forward the objectives, build up 
understanding, report back via publications and the RKB, and support the long term 
aims of the ResEx activity. 
 
 



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 13 

Annex 1: Second Edition Mechanism Descriptions 
The mechanism descriptions in this Annex are not presented in a structured way. 
Indeed, many classification schemes can be considered. Table 1 provides 
classification of those mechanisms which have been fully described in the RKB 
according to a variety of key characteristics: 

• The partner responsible for contributing the mechanism description. 

• The mechanism objectives.  
• Whether the mechanism is an architecture, a process or a tool. 

• The development/operational phase during which the mechanism can 
be applied (design, development more generally or run-time). 

• Whether the mechanism provides fault detection, fault forecasting, 
fault removal, and/or fault tolerance. 

• The resilience-building technology (RBT) with which the mechanism 
is most closely associated (corresponding to ReSIST Working 
Groups): 
o Architecture – resilience architecting and implementation 

paradigms. 
o Algorithms – resilience algorithms and mechanisms. 
o Socio-Technical – resilient socio-technical systems. 
o Verification – methods and tools for verifying resilience. 
o Evaluation – methods and tools for evaluating resilience. 

• The resilience-scaling technologies with which the mechanism is most 
closely associated (corresponding to ReSIST Working Groups): 
o Evolvability – Resilience evolvability, maintaining resilience 

during activities such as upgrading, recovery and fault handling, 
adaptation and reconfiguration. 

o Assessability – Resilience assessability, the ability of a system to 
assess its correct functioning and quality of service delivered under 
both nominal and stressful conditions. 

o Usability – Resilience usability, achieving or assessing usability of 
systems, particularly ubiquitous ones.  Helping users interacting 
with ubiquitous systems to understand the potential effects of their 
actions as well as preventing them from taking actions with 
unwanted and difficult to anticipate system-level effects. 

o Diversity – Resilience diversity, the use of components that can 
perform similar functions in the system context but differ in some 
essential aspect that affects their vulnerability. 

• The types of system to/within which this mechanism can be applied. 
• The main direct benefits of the mechanism, in terms of improved 

system resilience (in the case of run-time deployment mechanisms) or 
assurance of key system properties (in the case of pre-deployment 



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 14 

analysis tools); the latter type of benefit could lead to improved 
resilience of whatever systems are deployed, through bug-finding and 
potential freeing up of resources for other development activities, by 
achieving assurance at reduced cost. 

 
Table 1 shows the coverage achieved in the first and second phases of mechanism 
description. Beside the 24 mechanisms listed in this table, a further 8 are listed as 
“stub” entries requiring further effort to provide a full description. These are, typically, 
mechanisms which have been referred to as related to full mechanism definitions: 
they are: Accord; Deductive Reasoning; Dependability Benchmarking; Model-
checking; Self-managed cells; Static Analysis; Verification; Decryption Mixes. 

In addition to this list, approximately 120 further mechanisms have been included 
from the International Standard IEC 61508 (Functional safety of 
electrical/electronic/programmable electronic safety-related systems), Appendix 7 
(Overview of techniques and measures) at an “outline” level of detail. This means that 
we have described their objective and given a description of the technique, and links 
to relevant papers describing the technique. IEC 61508 is the international standard 
for electrical, electronic and programmable electronic safety related systems. Part 7 
lists techniques and measures to support the process of ensuring that systems are 
designed, implemented, operated and maintained to provide the required safety 
integrity level (SIL).  

The techniques listed are drawn from relevant annexes of Appendix 7 of the 
standard. From Annex B (“Techniques and Measures for Avoidance of Systematic 
Failure”), the techniques include the following:  

General measures and techniques: Separation of safety-related systems from non-safety-
related systems; Diverse hardware; Structured specification; Operation and maintenance 
instructions; Limited operation possibilities;   Protection against operator mistakes; 
Modification protection; Input acknowledgement 

Formal methods: Semi-formal methods: Finite state machines/state transition diagrams; 
Time Petri nets 

Computer-aided specification tools: Entity models; Checklists; Structured design; 
Modularisation; Computer-aided design tools 

Verification and Validation techniques: Simulation; Inspection (reviews and analysis); 
Walk-through; Functional testing; Black-box testing; Statistical testing;  Functional testing 
under environmental conditions; Interference surge immunity testing;  Static analysis; 
Dynamic analysis; Expanded functional testing; Worst-case testing; Fault insertion testing  

 Failure analysis techniques: Failure modes and effects analysis; Cause consequence 
diagrams; Event tree analysis; Failure modes, effects and criticality analysis; Fault tree 
analysis; Worst-case analysis 

From Annex C (“Techniques and Measures for Achieving Software Safety 
Integrity”), the techniques and measures include: 

Requirements and detailed design techniques: Structured methods; CORE (Controlled 
Requirements Expression); JSD (Jackson System Development); MASCOT (Modular 
Approach to Software Construction, Operation and Test); Real-time Yourdon; SADT 
(Structured Analysis and Design Technique); Data flow diagrams; Structure diagrams 

Formal notations: CCS (Calculus of Communicating Systems); CSP (Communicating 
Sequential Processes); HOL (Higher Order Logic); LOTOS; OBJ; Temporal logic; VDM 
(Vienna Development Method); Z 



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 15 

Design and coding standards: Defensive programming; No dynamic variables or 
dynamic objects; On-line checking during creation of dynamic variables; Limited use of 
interrupts, pointers and recursion; Structured programming; Information 
hiding/encapsulation; Modular approach;  Use of trusted/verified software modules and 
components 

Architecture design: Fault detection and diagnosis; Error detecting and correcting 
codes; Failure assertion programming; Safety bag; Software diversity (diverse 
programming); Backward recovery; Forward recovery; Re-try fault recovery mechanisms; 
Memorising executed cases; Graceful degradation; Artificial intelligence fault correction; 
Dynamic reconfiguration  

Development tools and programming languages: Strongly typed programming 
languages; Language subsets; Certified tools and certified translators; Library of 
trusted/verified software modules and components; Suitable programming languages 

Verification and modification: Probabilistic testing; Data recording and analysis; 
Interface testing; Boundary value analysis; Error guessing; Error seeding;  Equivalence 
classes and input partition testing; Structure-based testing; Control flow analysis; Data flow 
analysis; Sneak circuit analysis; Symbolic execution; Formal proof; Complexity metrics; 
Fagan inspections; Walk-throughs/design reviews;  Prototyping/animation; Process 
simulation; Performance requirements; Performance modelling; Avalanche/stress testing; 
Response timing and memory constraints;  Impact analysis; Software configuration 
management 

Functional safety assessment: Decision tables (truth tables); Hazard and Operability 
Study (HAZOP); Common cause failure analysis; Markov models;  Reliability block 
diagrams; Monte-Carlo simulation 

 



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 16 

  Partner Objectives Category Phase Fault 
Actions 

Res-
Building 
Tech. 

Res-Scaling 
Tech. 

Systems Direct 
Benefits 

Consensus 
Mechanism 

Newcastle  Group agreement in 
the presence of faults.  

Architecture Run-time Forecasting Algo Divers Distributed 
computer 
systems 

Agreement 
among correct 
components 

Dynamic Function 
Allocation  

Newcastle  To support the human 
operator effectively and 
resiliently in carrying 
out their control tasks. 

Architecture Run-time Tolerance Socio Assess Human-
machine 
control 

Effectiveness 
(incl. 
efficiency) and 
resilience 

N-Self-Checking 
Programming/1/1  

Newcastle  To tolerate faults 
through the use of 
components with the 
ability to check their 
own dynamic 
behaviour. 

Architecture Run-time Tolerance Arch Assess, 
Evolv, Divers 

Systems with 
self-checking 
components 

Fault 
tolerance 

N-Version 
Programming/1/1 

Newcastle  To utilise design 
diversity and voting in 
order to tolerate 
software faults 

Architecture Run-time Tolerance Arch Assess, 
Evolv, Divers 

Systems with 
diverse 
components 

Software fault 
tolerance 

Recovery 
Blocks/1/1 

Newcastle  To provide backward 
recovery to isolated 
sequential programs 

Architecture  Run-time Tolerance Arch Assess, 
Evolv, Divers 

Sequential 
programs 

Error recovery 

Robust re-
encryption mixes 

Newcastle  To provide ballot 
secrecy by 
anonymising ballot 
receipts. 

Process, 
Architecture 

Run-time Tolerance Algo Assess Ballots Security, 
anonymity, 
auditability 

Model based 
stochastic dep. 
evaluation tool 

BUTE  Model-based 
evaluation of 
architectural 
alternatives from the 
point of view of 
availability and 
reliability. 

Tool Design Forecasting 
(& Removal) 

Eval Assess Distributed Assurance of 
availability and 
reliability 

Tool/ Robustness 
testing 

BUTE  To generate and 
execute test cases to 
assess the robustness 
of a computer system. 

Process 

Development Forecasting 
(& removal) 

Verif Divers/ 
Assess 

ICT + stressful 
environments 

Assurance of 
robustness 

Supervisory 
Systems 

BUTE  To support real-time 
monitoring and 
visualisation of state 
and non-functional 
properties of hardware, 
software and service 
components in general 

Architecture Run-time Detection Arch Assess General 
purpose IT 

Real-time 
monitoring 
and 
visualisation 



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 17 

IT infrastructures. 

Cooperative 
Backup 

LAAS Long-term availability 
of data produced by 
mobile devices. 

Architecture Run-time Tolerance Arch/ Algo Divers Systems 
containing 
mobile devices 

Long-term-
availability, 
reduced local 
storage need 

Modelworks QinetiQ To provide scalable 
dependability 
assessment of systems 

Tool Design  Forecasting 
(& Removal) 

Eval Assess Distributed Assurance of 
safety, 
liveness and 
security 

Autonomic 
Computing 
Architecture 

ReSIST 
affiliate 
researcher 

To provide an 
architectural approach 
to autonomic 
computing: self-
configuration, self-
healing, self-protection, 
self-optimisation. 

Architecture Run-time Tolerance, 
Removal 

Arch Evolv Autonomic Efficient and 
resilient 
sharing of 
resources 

Ad-hoc routing in 
resilient ambient 
systems 

Darmstadt A basic network 
primitive, determines 
the resilience of 
distributed 
systems/applications. 

Process Run-time Tolerance Algo Evolv Distributed 
computer 
systems 

Resilience of 
applications 

Byzantine quorum 
systems 

Lisboa Tools for ensuring the 
consistency and 
availability of replicated 
data despite the benign 
failure of data 
repositories. 

Architecture Run-time Tolerance Algo Evolv Distributed 
computer 
systems 

Consistency of 
replicated data 

CLawZ QinetiQ To verify that Ada code 
meets a MathWorks 
MATLAB Simulink 
(control law) 
specification 

Tool Design Removal, 
Prevention 

Verif Assess Industrial 
control-law 
systems 

Verification 

CRIA - Critical 
Interaction 
Analysis Method 

Deep Blue Validation technique for 
safety assessment in 
complex systems 

Architecture Design Forecasting, 
Removal 

Arch Assess Traffic 
management 

Safety 
assessment 

Dynamic Function 
Allocation 
(Adaptive 
Automation) 

Newcastle To support the human 
operator effectively and 
resiliently in carrying 
out their control tasks 

Architecture Design Removal, 
Prevention 

Arch Assess Human 
interaction 

Control 
automation 

Heuristic 
Evaluation 

Deep Blue Usability engineering 
method for quick, 
cheap, and easy 

Process Design Removal, 
Prevention 

Eval Assess Humain 
interaction 

Quick UI 
evaluation 



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 18 

evaluation of a user 
interface design.  

Malporte QinetiQ To find exceptional 
behaviours in source 
code. 

Tool Design Removal, 
Prevention 

Verif Assess Command and 
Control, 
Aerospace 

Static analysis 

Patterns of 
cooperative 
interaction 

Newcastle Patterns of cooperative 
interaction that have 
been observed to 
improve resilience in a 
variety of systems 

Architecture Design Tolerance, 
Removal, 
Prevention 

Arch Divers Socio-
technical 
systems 

Resilience 
patterns 

Self-healing for 
Wireless Sensor 
Networks 

Darmstadt Self-organized 
autonomic systems 
such as Wireless 
Sensor Network (WSN) 
require self-healing 
techniques in order to 
maintain the required 
availability . 

Architecture Run-time Tolerance Arch/Algo Evolv Autonomic 
systems 

Resilient 
evolvable 
systems 

State machine 
replication 

Lisboa General method for 
implementing fault-
tolerant services in 
distributed systems by 
replicating servers and 
coordinating client 
interactions with server 
replicas 

Architecture Run-time Tolerance Arch/Algo Divers Distributed 
computer 
systems 

Server 
replication 

Trust and 
Cooperation 
Oracle 

LAAS To evaluate locally the 
level of trust of 
neighbouring entities 
and to manage 
cooperation incentives. 

Architecture Run-time Prevention Algo Assess Consumer 
products 

Trust 
evaluation 

WS-Mediator Newcastle An architectural 
solution to improving 
the dependability of 
Web Services 

Architecture Run-time Tolerance Arch/Algo Evolv/Divers Web-based 
systems 

Dependable 
composition 

Table 1: Summary of Resilience Mechanisms 
 



026764 ReSIST – Deliverable D33: Resilience-Explicit Computing: final  

 19 

Annex 2: Reports from Challenge Workshops 

 
 
 
Contents: 
 

• Report from Pisa workshop: “Challenge Problems for Resilience-Explicit 
Computing in Grids” 

• Report from Malvern workshop: “Challenge Problems for Resilience-Explicit 
Computing in Critical National Infrastructures” 

• Report from Newcastle workshop: “Challenge Problems for Resilience-Explicit 
Computing with Assistive Technologies”



 



Workshop on Challenge Problems for Resilience-Explicit Computing in Grids

Pisa, 14 July, 2008

Report on the application of Res-Ex mechanisms

to Grid computing1

Editors: Cinzia Bernardeschi, Andrea Domenici

DIIEIT, University of Pisa, v. Diotisalvi 2, I-56122 Pisa, Italy

December 3, 2008

1This work is supported under the ReSIST Network of Excellence, which is spon-
sored by the Information Society Technology (IST) priority in the EU Sixth Framework
Programme (FP6) under contract number IST 4 026764 NOE.



2



Contents

1 Grids and Resilience 5

2 Resilience-Explicit Computing 5

2.1 A Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The Res-Ex Approach 8

4 Related Work on Application Areas 8

4.1 Grid computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Dynamic reconfiguration . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Component-Based Software: selecting components . . . . . . . . 10

5 Service Oriented Architectures 10

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Recent research work in ReSIST . . . . . . . . . . . . . . . . . . 12

5.2.1 A Fault Tolerance Support Infrastructure . . . . . . . . . 12
5.2.2 Support for Human-Intensive Real-Estate Processes . . . 12
5.2.3 Service-oriented Assurance . . . . . . . . . . . . . . . . . 13
5.2.4 Modelling of Reliable Messaging in SOAs . . . . . . . . . 13

5.3 Other Research on SOA . . . . . . . . . . . . . . . . . . . . . . . 13
5.3.1 Resilient executive support for Web Services . . . . . . . 14
5.3.2 Resilience assessments and tools . . . . . . . . . . . . . . 14
5.3.3 Security and authentication issues . . . . . . . . . . . . . 15
5.3.4 Reliability of SOA protocols . . . . . . . . . . . . . . . . . 16
5.3.5 Transaction, composition and orchestration . . . . . . . . 16
5.3.6 Quality of service requirements . . . . . . . . . . . . . . . 17

6 Resilient Architectures with Off-the-shelf Components 18

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Lines of research on resilience with OTS components . . . . . . . 20

6.2.1 Identifying vulnerabilities of OTS software . . . . . . . . . 20
6.2.2 Recent work on diversity in replication-based FT systems 21
6.2.3 Diversity for security . . . . . . . . . . . . . . . . . . . . . 22
6.2.4 Adaptive Fault Tolerance . . . . . . . . . . . . . . . . . . 23
6.2.5 Infrastructure management . . . . . . . . . . . . . . . . . 23

6.3 Recent Research Work in ReSIST . . . . . . . . . . . . . . . . . . 24
6.3.1 An Immune System Paradigm . . . . . . . . . . . . . . . . 24
6.3.2 An Engineering Approach to Component Adaptation . . . 25
6.3.3 Fault tolerance via diversity for off-the-shelf products . . 25

7 Dependability Benchmarking 26

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 Dependability benchmarking approaches . . . . . . . . . . . . . . 26
7.3 Accidental faults . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.4 Intrusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.4.1 The Lincoln Lab experiments . . . . . . . . . . . . . . . . 31
7.4.2 University and research testing environments . . . . . . . 31
7.4.3 Commercial testing environments . . . . . . . . . . . . . . 32

3



4



Introduction

At the workshop on Challenge Problems for Resilience-Explicit Computing in
Grids1 supported by the ReSIST European Network of Excellence2, held in Pisa
on 14 July, 2008, a working group was established to continue the collaboration
among the participants. One of its commitments was to produce a document
summarizing known Resilience-explicit mechanisms that could be applied in
Grid computing. This report is the result of that commitment, and its contents
are a selection of published materials from the ReSIST NoE deliverables.

In particular, Sections 2 (Resilience-Explicit Computing), 3 (The Res-Ex Ap-
proach), and 4 (Related Work) are extracted from Deliverable D11 (Support for
Resilience-Explicit Computing [39]), while Sections 5 (Service Oriented Archi-
tectures), 6 (Building Resilient Architectures with Off-the-Shelf Components),
and 7 (Dependability Benchmarking) are from Deliverable D12 (Resilience-
Building Technologies: State of Knowledge) [40].

Topics from the deliverables have been chosen with the intent to provide Grid
developers and maintainers both with a catalogue of results that may address
relevant issues in their activities, and with an introduction to the approach
that the Resilience-Explicit community (or, more generally, the dependability
community) may take to the same issues. In fact, Grid practitioners are familiar
with many resilience-enhancing techniques, but they may be interested in seeing
how these techniques fit in the conceptual framework emerging from research,
and contributing to it.

1 Grids and Resilience

Dependability and resilience are crucial requirements for Grid systems. In a
Grid system, resilience comes into play as resilience of the infrastructure itself
and resilience for applications, i.e., available Grid services or mechanisms that
applications may use to satisfy their resilience requirements.

Some forms of resilience mechanisms are implicit in the nature of the Grid,
given the availability of a large number of resources, resource virtualization, the
availability of resource brokering services, and the use of data replication. In
particular, information and monitoring services are a valuable source of meta-
data both for long-term and run-time analysis of resilience-related properties.
Indeed, several tools are already in place that provide current and historical
availability and reliability metrics for various services.

2 Resilience-Explicit Computing

A long-term goal of current research is the provision of methods and tools that
support the development and operation of ICT systems that exhibit predictable
levels of resilience. Current system development methods rarely treat resilience-
related information explicitly, making it difficult to predict system resilience and
identify weaknesses. By contrast, in a resilience-explicit (Res-Ex) approach,

1http://resist.isti.cnr.it/wiki/doku.php
2http://www.resist-noe.org/

5

http://resist.isti.cnr.it/wiki/doku.php
http://www.resist-noe.org/


information about the resilience-related properties of components and infras-
tructure are stated explicitly in the form of metadata published by components
themselves, or by observers. Such metadata can be used at design-time to in-
form the choice of design patterns and development tools, or at run-time to tune
or reconfigure, maintaining resilience. We use the term resilience-explicit com-
puting to encompass both the design-time and runtime use of resilience-related
metadata.

We use the term metadata to refer to information on which human or ma-
chine decision-makers act in order to maintain or enhance a system’s resilience.
We use the “meta-” prefix in order to differentiate this from the data over which
a system is performing its functionality. Examples of metadata include: a per-
son’s workload in a socio-technical system, descriptions of known failure modes
declared in the functional specification of a component, or historical availability
statistics. Metadata could also be declared at different levels, such as compo-
nents, the whole system or even for the user-interface of the system. We may
even conceive of a market in trustworthy metadata, whereby metadata on ser-
vice resilience might be provided by third parties and used to govern run-time
selection of components and services.

In order to support machine-assisted decision-making, especially at run-time,
it is necessary to develop languages for representing resilience metadata. Exam-
ples of representations include simple enumerations (e.g., component integrity
levels), numeric representations (e.g., probabilities), or possibly formal logical
descriptions (e.g., functional preconditions). Semantics are required for meta-
data so that analyses can be conducted consistently and with machine support.
In particular, common semantics are required to ensure compatibility of meta-
data from heterogeneous sources (e.g., to ensure that metadata labelled “failure
rate” from two different component providers are either interchangeable or con-
vertible). The analyses that we envisage going on at run-time or design-time as
part of the decision to adapt or reconfigure may involve calculation over numeric
metadata, logical deduction or, most likely, a mixture of the two.

As well as precise descriptions of metadata, Res-Ex computing requires that
we have descriptions of the mechanisms that may be deployed or configured in
order to meet a resilience target. We therefore use the term resilience mecha-
nism to refer to a design pattern, technique or tool intended to improve system
resilience. Examples include fault-tolerant architectural patterns (e.g., n-version
programming) and development tools (e.g., robustness testing tools). In order
to exploit resilience metadata in machine-supported decision-making, we require
theories that describe the characteristics of the resilience mechanisms that may
be deployed or configured within a system in terms of the relevant metadata.

We focus on the decisions to select a particular resilience mechanism from
among alternatives and to instantiate or configure the mechanism for a specific
application. Such decisions may be made statically, at design-time, or dynam-
ically within a running system. In either case, in order to reach a resilience
target, the decision-maker requires metadata about the characteristics (e.g.,
failure rates) of components, infrastructure and environment, and descriptions
of the resilience mechanisms in terms of their effects on metadata, for example
failure rate of a fault tolerant assembly in terms of failure rates of its com-
ponents, or metadata generated by a robustness testing tool. The resilience
mechanism descriptions may be combined with metadata to obtain a prediction
of the consequences of a particular selection or configuration.

6



The goal of the Res-Ex in ReSIST is to encourage the community to give
descriptions of mechanisms and metadata that support this decision-making
process. In particular, the group wishes to promote the contribution of mecha-
nism descriptions in a form that enables automated analysis. There is currently
very little support for gathering such descriptions or for making use of them.
The descriptions of resilience mechanisms available to practitioners at present
are deeply embedded in the scientific literature and are in many cases hard to
extract. We wish to encourage researchers developing new mechanisms to give
descriptions that help answer the question “What exactly does this mechanism
achieve in terms of resilience?”. We hope thereby to encourage research to evalu-
ate existing and new mechanisms, and scholarship in codifying that information
and making it available to practitioners. The work of ReSIST Task IT-T2 is
to develop a means of recording descriptions of resilience mechanisms that are
based on metadata and which integrate with the emerging Resilience Knowl-
edge Base (RKB). This allows mechanism descriptions to be linked to other
resilience knowledge through the emerging ontologies and through the research
and training/education data embedded in the RKB.

2.1 A Scenario

In order to further clarify the resilience-explicit computing concept, consider a
simple scenario. A designer requires a system that tolerates one (sequential)
hardware fault and/or one software fault. The designer has limited resources
available and wishes to provide a cost effective solution. However, the system
must also be as reliable as possible. The designer knows about three fault-
tolerant architectures that would provide the necessary level of tolerance. These
are, in our terms, resilience mechanisms :

• Recovery Blocks (RB/1/1);

• N-Version Programming (NVP/1/1);

• N-Self Checking Programming (NSCP/1/1).

Which of these mechanisms provides suitable cost and reliability levels?
Metadata can be obtained for the three alternatives, including number of compo-
nents, structural overheads, and operational time overheads in normal operation
and when errors occur. For example, for RB/1/1, metadata includes3:

• Total number of variants required (= 2);

• Total number of hardware components required (= 2);

• Ratio of Development and Maintenance Cost of fault Tolerant versus Cost
of non-FT software (Min 1.33; Avg 2.17; Max 1.75);

• Probabilities of detected and undetected failures on demand (as functions
of probabilities of independent faults in components and decider).

3These metadata are derived from the comparative study in [89].

7



3 The Res-Ex Approach

In order to make progress towards our goal of providing resilience-explicit guid-
ance for the developer community, we aim to provide metadata-based descrip-
tions of a large number and wide range of resilience mechanisms. We have
begun this task by asking specialists across the ReSIST network to provide a
preliminary and broad-ranging set of “first edition” descriptions.

The full first edition mechanism descriptions have been included in the
on-line Resilience Knowledge Base (RKB) and are accessible to readers at
http://resist.ecs.soton.ac.uk/resex/. The RKB is a key integrative technology
contributed by ReSIST, gathering information on projects, publications, peo-
ple, resilience mechanisms, educational materials and course descriptions. The
addition of Res-Ex mechanism descriptions is part of the ongoing expansion of
the value-added content of the RKB. Incorporating the mechanism descriptions
requires utilisation of the existing ontological capability of the RKB, but ex-
panding it to cover mechanisms and metadata via a Res-Ex ontology. More
information on this aspect is included in Section 4 of [39].

Giving the RKB the capability of holding Res-Ex mechanism descriptions
is not sufficient to support expansion of the collection. There must also be
an interface whereby mechanism descriptions can be fed into the RKB and
maintained once entered. A prototype of such an interface has been developed
and used for recording the first edition mechanisms. This interface guides the
creator of a mechanism description to answer the right questions in the right
context so that they deliver the required information in the appropriate format.
The interface and some of its rationale are considered in Section 3 of [39].

4 Related Work on Application Areas

The Res-Ex work on support for resilience-explicit computing has concentrated
on providing a means of recording metadata-based descriptions of resilience
mechanisms with the intention that the descriptions can be used to assist in the
selection and configuration of mechanisms at design-time and run-time. Looking
forward to run-time exploitation of metadata, there are several technologies
supporting dynamic selection of components and services. In this section, we
identify relevant existing work and place Res-Ex computing in this context,
particularly noting those technologies in which metadata already plays a role.
We see these as technologies that may be able to utilise metadata-oriented
descriptions of resilience mechanisms.

For the purposes of this report, only the work more closely related to Grid
computing has been selected from Section 5 of [39]. Namely, Section 4.1 (of
the present report) relates on work explicitly referring to Grid systems, while
Sections 4.2 (Dynamic reconfiguration) and 4.3 (Component-Based software)
relate on issues that are expected to be relevant for Grids.

4.1 Grid computing

Computational grids are infrastructures that provide access to shared comput-
ing resources for a great number of users involved in large-scale collaborations.
In the LHC Computing Grid (LCG) and Enabling Grid for E-sciencE (EGEE)

8



projects, the Grid Laboratory Uniform Environment (GLUE) schema defines
a common conceptual data model for Grid resource discovery and monitor-
ing [116].

There are neither protocols nor standards in the Grid community for deal-
ing with ontologies [66]. However, ontologies can be used in Grids for several
purposes: for describing policies and sharing information, services and comput-
ing resources in virtual organization, and for describing formal and informal
properties of Grid resources and services. The OntoGrid project4 aims at devel-
oping a reference Semantic Open Grid Service Architecture (S-OGSA) for the
development of distributed applications that need to use explicit and distributed
metadata. The Web Services Data Access and Integration Ontology realisation
(WS-DAIOnt) defines the data access services that are needed for dealing with
ontologies in Grid environments [66]. Reference [37] describes the approach for
metadata management proposed in the context of the S-OGSA. Reference [81]
analyses the problem of resource discovery in the Semantic Grid, showing how
to solve this by utilizing Atlas, a P2P system for the distributed storage and
retrieval of RDF(S) data. Atlas is being used to realise the metadata service of
S-OGSA in a fully distributed and scalable way.

Grid computing encompasses resource discovery and resource allocations at
run-time; it covers issues related to semantics and performance. It is an ideal
application area for resilience-explicit computing. Techniques such as S-OGSA
explicitly use metadata at run-time and propose a middleware architecture sup-
porting metadata to be displayed, and shared among the different Grid entities.
Focus is given on service provisioning and access control. Research on build-
ing reliable and high available Grid services could benefit from Res-Ex work:
for example, metadata based descriptions of resilience mechanisms could allow
strategies for enhancing reliability of services in S-OGSA.

4.2 Dynamic reconfiguration

Run-time reconfiguration of services has been reported in Wapee [85], a specific
middleware that supports dynamic reconfiguration in case of detected faults. A
dedicated Fault-Manager detects faults and a Run-time Service Manager trig-
gers reconfiguration once faults have been detected. A Monitoring Service pro-
vides real-time monitoring and feedback status of jobs submitted to services.
The detection of faults and the choice of the replacement component are based
on formal description of faults, of functionality of services and of context infor-
mation (resource requirements). Three ontologies are defined: fault ontology for
types of faults and their causes; service ontology for functionality and resource
requirements of services; and recovery strategy ontology for fault resolution.

In the field of autonomic computing, a uniform representation and compo-
sition of autonomic elements has been proposed [143], encompassing the use
of a service-oriented architecture supporting the interactions of these elements,
preliminary design patterns and policies. Accord [95] is a programming frame-
work for autonomic applications, supporting the use of rules to control the be-
haviour and interaction of autonomic components. Dynamic addition, deletion
and replacement of components are supported, as well as changes to interac-
tions. Self-Managed Cells (SMC) [48] consist of (heterogeneous) hardware and

4www.ontogrid.net

9

file:www.ontogrid.net


software elements and management services integrated through a common pub-
lish/subscribe event bus. Managed components are monitored and decisions and
actions are taken on the basis of provided policies. SMC elements have well-
defined expected interfaces, limiting the possibility for new elements to join the
system, especially if they have not been designed by the same team. The SMC
scheme does not specifically address the use of metadata, even though elements
are monitored, which nevertheless implies that metadata is collected about their
behaviour.

Dynamic reconfiguration of services tends to achieve goals similar to those
of resilience-explicit computing at run-time. The use of metadata is not al-
ways “explicit” in the different approaches, but the use of metadata is present,
since monitoring of a component implies checking some specific behaviour /
performance / quality of service, etc. The above techniques focus on run-time
architectures and middleware. Design-time issues are not yet primarily con-
sidered. The Res-Ex approach clearly encompasses dynamic reconfiguration of
services and autonomic computing aspects in general. Res-Ex computing in-
tends to have a larger scope: it covers not only run-time activities related to
resilience in the large (not only limited to reconfigurations), but also design-time
activities by supporting the choice of resilience techniques at design-time.

4.3 Component-Based Software: selecting components

A design-time automated process for selecting, evaluating and testing third
party components is presented in [104], based on both metadata and formal
specification of the required component (interface and behaviour) and of its
context of use. Metadata capture context information and specific criteria of
the desired component. The specification is used first to select the possible
components on the basis of their expected functionality, and second to derive
tests for evaluating the selected components in the targeted environment. This
process leads to a ranking of short-listed components according to criteria such
as performance, security, or ease of integration. The Z language is used for the
specifications. The specification and the metadata are captured with XML. The
above selection process has further been extended with AI techniques for clas-
sifying components in order to take into account interdependent criteria [103].

This technique allows selection at design-time of the appropriate component.
The main criterion is functionality; the use of the tests allows further identi-
fication of the components on the basis of additional non-functional criteria
(e.g., performance). This type of work is completely in line with the resilience-
explicit approach which allows both design-time and run-time use of metadata
in order to ensure adequate choice of the right component. Even though the
resilience-explicit computing approach is suited for configuration at design-time,
and re-configuration at run-time by selecting components or services, it also goes
further by supporting the use of metadata in order to define resilience strategies
(different from re-configuration strategies).

5 Service Oriented Architectures

As Grid infrastructures are increasingly incorporating concepts from the “ser-
vice oriented” paradigm, research in the field of service oriented architectures

10



provides insight on Grid-specific issues [40].

5.1 Introduction

The term Service Oriented Architecture (SOA) refers to a style of information
systems architecture in which distributed applications are constructed by com-
bining loosely coupled and interoperable Services that interoperate according to
a Service Contract that is independent of the underlying platform and program-
ming language used to implement the service. Because the service contract hides
the implementation of the service, SOA-compliant systems can be independent
of any particular development technology or execution platform.

In principle, SOAs can be realised using a variety of different middleware
protocols (for example, CORBA or Jini), but in practice, the term SOA is
often used to refer to an SOA implemented using the web services protocol
stack. A Web Service is essentially just a software component with a well-
defined interface that can be accessed programmatically over a network using
standard protocols. In this sense, web services are no different from conventional
client-server applications built using middleware technologies such as CORBA.
However, the distinguishing characteristic of web services is the use of XML-
based protocols and languages to describe the interface to the web service and
the messages that it understands and generates.

Although the benefits of Service Oriented Architectures are certainly of high
interest for applications with important dependability requirements, the lack of
mature advances regarding the resilience of such architecture is a major impair-
ment to their use in large critical applications. Thus, the big challenge is how
to build reliable/secure distributed applications out of unreliable/insecure Web
Services and communication infrastructures.

Regarding resilience and dependability of SOAs, we propose to classify the
various works and contributions in six research domains. This separation is
not always clear as problems and solutions often overlap several domains. It
is however a way to summarize our state of knowledge on SOA and related
resilience issues:

• Resilience of the executive support for Web Services,

• Resilience assessments and tools,

• Security and authentication issues,

• Reliability issues,

• Transaction, composition and orchestration,

• Quality of service requirements.

The first dependability issue for SOA applications is to improve the relia-
bility of the runtime support of the Web Services, i.e., the platform on which
the web service is executed. Conventional dependability techniques can be used
to address this aim, from both an architectural and evaluation viewpoint. For
example, relevant techniques include replication at various hardware and soft-
ware levels (OS, middleware, etc.), failure mode analysis using fault injection
at various levels, and failure mode analysis proving inputs to the design of fault

11



tolerance mechanisms. This is why a large portion of current work in this area
tackles the problem in this way. In the same way, conventional techniques can
be applied to the communication infrastructure and transport protocols.

The second dependability issue is to tackle the problem at the level of actual
SOA concepts, i.e., all protocols and software components used to interact with
Web Services. The works we are aware of currently address security and relia-
bility issues, transactional problems, flexibility of dependability solutions with
respect to the application needs, and orchestration of large-scale applications
based on Web Services. Clearly, there are still many open subjects and difficult
issues to address in this second dimension. It is worth noting however that al-
though the backbone of an SOA may introduce multiple fault sources [71], the
architecture also allows for design diversity in the form of alternative services
and communication channels that may be available over the Internet.

5.2 Recent research work in ReSIST

In this section we summarize the work targeting Service Oriented Architectures
done by the partners of the network in the relevant period of ReSIST, included
as contributions in this deliverable. These contributions relate to the topics
proposed in the previous sections [40].

5.2.1 A Fault Tolerance Support Infrastructure for Web Services

based Applications

In this paper, researchers from LAAS propose a support infrastructure that
enables both clients and providers to add dependability mechanisms to web
services used in large-scale applications [124]. To this aim, it is introduced the
notion of so-called Specific Fault Tolerance Connectors. The connectors are soft-
ware components able to capture web service interactions between clients and
providers. They implement filtering and error detection techniques (e.g. run-
time assertions) together with recovery mechanisms to improve the robustness
of web services. The same web service can be used in several service-oriented
applications with different dependability constraints and thus taking advantage
of different connectors. To implement recovery strategies, connectors can use
the natural redundancy of web services. Similar services can also be found to
provide an acceptable service instead of the original one, a sort of degraded
service. As this approach provides separation of concerns, such dependability
mechanisms can easily be adapted to the needs. A central contribution of this
work is a dedicated language (a DSL, Domain Specific Language) that has been
developed to build reliable connectors. A platform has been developed (services
and tools), used to implement dependable web services based applications and
tested with various web services available on the Internet.

5.2.2 Secure and Provable Service Support for Human-Intensive

Real-Estate Processes

In this paper, researchers from Newcastle introduce SOAR, a service-oriented ar-
chitecture for the real-estate industry that embeds trust and security, allows for
formal correctness proofs of service interactions, and systematically addresses
human interaction capabilities through web-based user access to services [41].

12



The paper demonstrates the features of SOAR through a Deal-Maker service
that helps buyers and sellers semi-automate the various steps in a real-estate
transaction. This service is a composed service, with message-based interac-
tions specified in SSDL, the SOAP service description language. The imple-
mented embedded trust and security solution deals with the usual privacy and
authorization issues, but also establishes trust in ownership and other claims of
participants. We also demonstrate how formal techniques can prove correctness
of the service interaction protocol specified in SSDL. From an implementation
perspective, a main new contribution is a protocol engine for SSDL. A proof-of-
concept demonstration is accessible for try-out.

5.2.3 Service-oriented Assurance – Comprehensive Security by Ex-

plicit Assurances

Flexibility to adapt to changing business needs is a core requirement of today’s
enterprises. This is addressed by decomposing business processes into services
that can be provided by scalable service-oriented architectures. Service-oriented
architectures enable requesters to dynamically discover and use sub-services. To-
day, service selection does not consider security. In this paper, researchers from
IBM introduce the concept of Service-Oriented Assurance (SOAS), in which ser-
vices articulate their offered security assurances as well as assess the security of
their sub-services [82]. Products and services with well specified and verifiable
assurances provide guarantees about their security properties. Consequently,
SOAS enables discovery of sub-services with the “right” level of security. Ap-
plied to business installations, it enables enterprises to perform a well-founded
security/price trade-off for the services used in their business processes.

5.2.4 Modelling of Reliable Messaging in Service-Oriented Architec-

tures

Due to the increasing need of highly dependable services in Service-Oriented
Architectures, service-level agreements include more and more frequently such
traditional aspects as security, safety, availability, reliability, etc. Whenever a
service can no longer be provided with the required QoS, the service requester
needs to switch dynamically to a new service having adequate service parame-
ters. In the current paper, researchers from the University of Budapest propose
a meta-model to capture such parameters required for reliable messaging in ser-
vices in a semi-formal way [62]. Furthermore, they incorporate fault-tolerant
algorithms into appropriate reconfiguration mechanisms for modelling reliable
message delivery by graph transformation rules.

Currently these researchers are working on the formal verification of the cor-
rectness of the proposed reconfiguration mechanisms using existing verification
tools for graph transformation systems. As the next step in the future, they plan
to implement the automatic generation of runtime implementation in existing
middleware and to create test cases for reliable messaging.

5.3 Other Research on SOA

In the next sections, we report on some significant examples, research projects
and current standardization efforts targeting various aspects of resilience for

13



Service Oriented Architectures, following the research and development topics
mentioned above.

5.3.1 Resilient executive support for Web Services

A framework for improving dependability of web services was proposed in DeW
(A Dependable Web Service Framework) [3], which can be understood as a
register containing the address of different copies of a web service. This register
guarantees the physical-location independence and thus a web service-based
application is able to continue running as long as a reference to an available copy
is reachable through the register. This framework enables non-stop operation
in the presence of crash faults affecting the web services or service migration.
Active-UDDI [73] is based on a similar research approach.

FT-SOAP [91] enables a service provider to replicate Web Services using
a passive replication strategy. This approach is based on interceptors at the
SOAP layer enabling the client application to redirect request messages towards
replicas in case of failure of the primary. At the server location, interceptors are
used to log messages, to detect faulty replicas and to manage available replicas.
The important problem of state transfer is controlled internally, i.e., it is part
of the implementation of the service. A similar passive replication approach has
been developed in the JULIET project, using .NET [110, 46]. In both cases, the
approach relies on a specific software layer that must be installed at the client
and at the provider platform, which can raise interoperability problems due to
inconsistency with the notion of SOA.

FTWeb [125] is another example of an infrastructure providing active repli-
cation strategies for web service-based applications. This project is based on
the FT-CORBA standard, WS-Reliability [131] (see Section 5.3.4 on reliability
of SOA protocols) and a global ordering service [44] of client requests to en-
sure replica consistency. This project also introduces a specific software layer
that may impair interoperability. Beyond that, it is clear that this architecture
strongly depends on a particular middleware support, namely CORBA, and
thus Web Services must be implemented as CORBA objects.

Thema [107] is a another middleware-based implementation of fault tolerance
mechanisms for web services, more precisely aiming at tolerating Byzantine
Faults. The communication service relies on former work [121] providing reliable
multicast and consensus policies. WS-FTM (A Fault Tolerance Mechanism for
Web Services) [98] is a similar research effort on consensus issues for web services.

5.3.2 Resilience assessments and tools

Most of web services must be considered as black-box components, which means
that their development process, their design features, and their robustness in
the presence of faults is not known. This kind of situation is not new, and
also applies to the use of COTS components in dependable systems for which
a lot of work has been carried out, targeting operating systems [86], real-time
microkernels [9] and middleware such as CORBA [102, 101]. However, to our
knowledge, the assessment of the resilience of SOA is rather limited today and
currently relies on conventional benchmarking approaches.

Although failure mode analysis has not been performed yet for web services,
we can however mention the assessment by fault injection (SWIFI) carried out in

14



the OGSA platform based on web services [99, 96, 97]. One of the results of this
work is the development of WSFIT (Web Services Fault Injection Tool) [96]
for the assessment by fault injection of the SOAP protocol. In practice, the
SOAP parser Axis 1.1 is instrumented to inject faults on input/output request
messages. Recent results presented in [128] also reveal that version 1.3 of the
Axis software should not be used in business-critical applications because of
several problems like memory-leakage, performance degradation and hang-up
situations of the server that require manual restart intervention. This type of
work relates to the discussion of dependability benchmarking in Section 7.

One benefit of such work is to propose a fault model for web service based
applications, i.e., the kind of faults affecting a web service in operation [38, 63].
Beyond physical faults affecting the runtime support, communication faults are
one of the most important sources of faults for large-scale applications on the
Internet. However, because of the complexity of the web service infrastructure
at runtime (protocol analysers, dynamic code generation, application servers,
virtual machines / operating systems), software faults must be considered as
a first class of problems [71]. For example, the SOAP parser can be subject
to development faults, which could lead to an incorrect analysis of messages
and/or a wrong mapping of data types. In short, the development of large-scale
critical application in this context must take into account both physical and
software faults affecting the executive and communication infrastructure but
also evolution faults, e.g., inconsistency between WSDL documents and stubs
produced from older versions.

5.3.3 Security and authentication issues

A lot of work has been carried out regarding security in Services Oriented Archi-
tectures built out of web services, and this part of the web services protocol stack
is relatively mature. There are several security related web service standards,
in particular WS-Security [112], which aims at providing end-to-end security
including authentication (using security tokens), confidentiality and integrity of
messages. WSSecurity, which is based on XML-Signature and XML-Encryption,
is implemented at the SOAP request level by using non-functional elements in
the SOAP header and by encrypting the message body. XML-Signature [18] is
a specification targeting the creation and the processing of electronic signatures
of XML documents or parts of them. XML-Encryption [70] is a specification
of object encryption and formatting of the encrypted result in XML.

WS-Security defines a basic framework for transmitting web service messages
securely. Above this layer there is less agreement, but IBM and Microsoft have
proposed the set of layers and software abstractions shown in Figure 1.

WS-Policy [16], WS-Trust [6] and WS-Privacy build directly on WSSecurity
to add higher level security characteristics. Thus, WS-Policy specifies the secu-
rity contract, describing how to express the security requirements of the provider
and the capabilities of the client, WSTrust specifies the model of the mechanisms
to establish trusted relations, either directly or indirectly via trusted third party
services, whilst WS-Privacy (in progress) is a language for the specification of
privacy features (on both machine- and human-readable format) that can be
interpreted by user agents.

Higher-level protocols build on top of these protocols to solve interoperability
issues between heterogeneous security approaches. Thus, WS-SecureConversation

15



Figure 1: Abstractions and Software Layers for Web Services Security
(from [68]).

[5], WS-Federation [15] and WS-Authorization (in progress) provide a general
framework for authorization mechanisms in web services architectures.

5.3.4 Reliability of SOA protocols

There is clearly a need for web service messages to be delivered reliably as well
as securely, and there are many examples of reliable messaging systems that can
provide such guarantees. However, web services cannot depend on the seman-
tics of the underlying transport protocols, and thus, reliable messaging must
be implemented at the SOAP level to ensure end-to-end reliability guarantees
and interoperability across a range of different transport protocols. A reliable
messaging protocol for web services essentially defines an abstraction of a reli-
able message processing layer that hides the details of the underlying mechanism
used to ensure reliable delivery, which is typically some form of message-oriented
middleware. The basic reliability guarantee provided is “best effort” delivery,
perhaps within a specified time limit, or else a failure indication.

Unfortunately, for historical and perhaps political reasons, there are two rival
standards for reliable messaging for web services, namely WS-Reliability [131]
and WS-ReliableMessaging [108]. Although the two specifications offer very
similar capabilities with respect to reliable messaging, they seem to have a very
different approach to specifying the policy associated with a reliable messaging
channel. WS-ReliableMessaging appears to take a rather static view in which
the policy is negotiated as part of setting up the channel, and then the agreed
parameters apply to the whole sequence of messages. This means that it is not
necessary to specify the parameters as part of each message, but it also means
that it is not possible for the policy to be adapted dynamically except by shutting
down the channel and starting again. In contrast, WS-Reliability seems to allow
much more flexibility, but at the cost of some overhead associated with each
message. Ultimately, the performance of a reliable messaging system depends
on the underlying implementation rather than the protocol, but it would seem
that the WS-Reliability proposal allows the implementer more flexibility.

5.3.5 Transaction, composition and orchestration

In addition to BTP (Business Transport Protocol) [30], an older technology, WS-
AtomicTransaction [25], WS-BusinessActivity [26] and WSCoordination [27] are
three complementary specifications supported by IBM, Microsoft and BEA that
should support the implementation of synchronous short duration and ACID

16



transactions (WS-AtomicTransaction) as well as asynchronous long-running busi-
ness transactions (WS-BusinessActivity).

Transaction management provides a basic infrastructure for coordinating the
execution of web services. However, a service-oriented application can be com-
posed of several web services, which requires some sort of language for “composi-
tion”, “orchestration” or “choreography” of services. The web services included
in the composition are coordinated by a workflow that constitutes the business
process of the composition.

Several initiatives specify such business processes using XML documents.
Three similar specifications have been proposed for the workflow oriented appli-
cations: XLANG [137] by Microsoft, WSFL (Web Services Flow Language) [90]
by IBM, and WSCL (Web Services Language Conversation) [17] by Hewlett-
Packard. BPEL4WS (Business Process Execution Language for Web Services) [7]
which is a fusion of WSFL and XLang, is the most mature version and an imple-
mentation is already provided by IBM and Microsoft. This integrates the notion
of web services transactional specifications to manage the composition and to
perform compensatory transactions (a kind of undo operation) when necessary.
In web services technology, a transactional service must propose compensatory
transactions, which are the only practical way to maintain consistency in case
of blocking or failure situations.

Recovery aspects at service level have been investigated in WSCAL (Web
Service Composition Action Language) [135, 136], a language for service com-
position based on XML developed to address fault tolerance of web services, in
particular by using forward error recovery strategies. The principle of forward
error recovery is clearly more suitable for web services because it does not im-
pose the handling of state management issue to the web service provider. The
WSCAL language creates a coordinator seen as a proxy between the client and
all web services in the composite application. The main role of the coordinator
is to handle exceptions returned by web services, based on an exception tree
for all web services belonging to a composite application. When an exception
is raised by a service, the proxy is able to check whether this exception has an
impact on other services or not, thanks to the exception tree. When necessary,
the proxy triggers the compensating transaction or any other recovery action
on target services. The implementation of the language is still in progress.

Finally, BPEL4WS has been used to manage the upgrade of individual com-
ponent web services into composite web services based applications [63]. The
idea consists of switching the composite web service from using the old release
of the component web service to using its newer release, only when confidence
in the new version is high enough, so that the composite service dependability
will not deteriorate as a result of the switch.

5.3.6 Quality of service requirements

Quality of service issues in the broader sense have been addressed in [106]. In this
respect, except for some security and transaction aspects, there is no formalism
today to express properly the expected QoS of a web service, i.e., the core
parameters (e.g., delays, resources requirements, etc.) that could be exploited
by developers and application designers. In a recent work, IBM proposed a
language WSEL (Web Services EndPoint Language) whose aim is to precisely
define certain QoS characteristics of a Web Service Endpoint. Its development

17



is still in progress. In addition, huge efforts are spent to define Service Level
Agreements (SLAs) corresponding to some QoS agreement between client and
provider, including expected QoS objective criteria (e.g., delay of service restart
in case of failure) and penalties when the provider does not fulfil them.

WS-Agreement [8] is an XML language that describes a service-level agree-
ment for Grid Computing and that is supported by the GRAAP working group
(Grid Resource Allocation and Agreement Protocol). Service-level agreements
distinguish between negotiation of QoS requirements and monitoring of the pro-
vided QoS in operation. Hence, quality of service and other guarantees that
depend on actual resource usage cannot simply be advertised as an invariant
property of a service and then bound to by a service consumer. Instead, the ser-
vice consumer must request state-dependent guarantees to the provider, result-
ing in an agreement on the service and the associated guarantees. Additionally,
the guarantees on service quality must be monitored and failure to meet these
guarantees must be notified to consumers.

The objective of the WS-Agreement specification is to define a language
and a protocol for advertising the capabilities of providers and creating agree-
ments based on creational offers, and for monitoring agreement compliance at
runtime. Currently, WS-Agreement is just a draft, but this is the most promis-
ing and advanced work with respect to other research work like WSOL [138],
WS-QDL [146, 147, 67], etc.

6 Building Resilient Architectures with Off-the-

shelf Components

Grid infrastructures are mostly built out of off-the-shelf components, ranging
from operating systems to middleware and applications. This section deals with
the relationship between the overall dependability of complex infrastructures
and the dependability of its components [40].

6.1 Introduction

The societal impact of the [un]dependability of off-the-shelf (OTS) information
and telecommunication components can hardly be overstated. As the “informa-
tion society” takes shape, people increasingly depend on the proper functioning
of a loose, open computing/communication infrastructure whose building blocks
(e.g., proprietary or open-source operating systems and web servers) have either
established records of poor dependability, or little evidence of good development
practices and acceptable dependability. There has now been for several years
a trend towards increasing reliance on OTS components: both from developing
custom-built components for each new system towards using existing compo-
nents, and from using components developed for niche markets with high de-
pendability requirements to buying alternatives that offer lower costs thanks to
a larger market. These trends have been accompanied by increasing concerns,
perhaps mostly about complex OTS software, with design faults leading to more
frequent failures and security problems, but also about OTS hardware for the
mass market, containing design faults and also becoming increasingly suscep-
tible to transient faults. In embedded computing, increased reliance on OTS
components has already created serious challenges for designers. Apart from

18



headline-making events like the disabling of a U.S. Navy warship by a Windows
NT crash [129], industries dealing with hazardous processes face the inevitabil-
ity of replacing, for instance, safety-qualified hardware sensors, now unavailable,
with ubiquitous “smart” sensors containing software, that offer many advantages
except comparable evidence of dependability.

Using OTS components is commonly believed to reduce at least the initial
cost of deploying complex IT systems. But their actual advantages in terms of
Total Cost of Ownership (TCO) are uncertain, and inadequate dependability
and security contribute heavily to this cost. For instance, a recent analysis [115]
suggests that out of TCO values for OTS systems that vary between 3.6 and
18.5 times the purchase cost of systems, “a third to half of TCO is recovering
from or preparing against failures”. To such visible costs, one must add the
cost of failures that are never detected (e.g., data corruption that causes sub-
optimal business decisions and other waste), and of catastrophic failures that
are too rare to be part of such surveys.

In many of the applications that depend on commercial OTS (COTS) compo-
nents, the risk from design faults has not yet been addressed adequately. While
awareness of these costs and risks slowly grows among users, large vendors of
OTS components are slow in improving, due to contrasting market pressures
and the sheer difficulty of improving the huge base of installed systems. The
supply of many OTS components will be driven by the dependability require-
ments that satisfy the majority of their mass markets, but are insufficient for
specific business and government sectors of the Information Society; this may
well remain true in the long run. This view is supported by the recent history of
the industries of safety-critical computer applications. As special product lines
of high-dependability components became extinct due to competitive pressures
these industries have increasingly had to adapt to using general-purpose tools
and OTS components, often with insufficient or unknown dependability. The
necessary solution is to use fault tolerance against the failures of these com-
ponents. Side by side with industrial applications of known schemes, the last
decade has thus seen a steady growth of the research on the application of fault
tolerance specifically to systems built with OTS components.

The fault-tolerant architectures that can be used to preserve system depend-
ability in the presence of (demonstrated or suspected) insufficient dependability
of components vary along several dimensions, which it is useful to recall in order
to characterise the different lines of currently active research.

First, regarding the form of error detection, confinement and recovery, both
architectures using additional components dedicated to monitoring and recovery
from failures of OTS components, and ones based on modular (diverse) redun-
dancy appear promising. The former have always been preferred for applications
where the cost of failure did not justify the high cost of developing multiple ver-
sions of a component. For OTS components, it often takes the form of wrapping,
in which a custom-made component filters communications between the OTS
component and the rest of the system. But modular redundancy with diversity
(i.e., fault-tolerant architectures using diverse, functionally equivalent compo-
nents) becomes an affordable competitor, since for many functions of OTS com-
ponents (from chips to complete software packages and hardware-plus-software
systems), the market offers alternative, diverse OTS products. Diversification
at the level of whole software packages or servers has also been widely advo-
cated for protection of large-scale infrastructures, given the current situation of

19



widespread vulnerabilities, whereby an attacker, having once discovered a single
software bug that opens a security vulnerability, can exploit this knowledge at
minimal cost to attack myriads of hosts.

Fault-tolerant architectural solutions also differ in the level (in the decompo-
sition or functional hierarchies in a system) at which fault tolerance is applied.
Some research focuses on application-level, end-to-end fault tolerance, to deal
with the well-known problems of mass-marketed operating systems and applica-
tions. Generic, application-level fault tolerance (e.g. multiple-version software)
will to some extent also protect against failures and vulnerabilities in the lower
level (e.g., operating systems, processors). However, other research also con-
siders means that are specialised at lower level of granularity (e.g., wrapping is
applied at all levels from complete applications to individual units in libraries)
or in the software-hardware hierarchy (e.g., specialised to tolerate processor
failures).

A related area of interest concerns developing essential building blocks that
make fault-tolerant architectures easier to build out of undependable, mass-
market OTS components, by guaranteeing properties of low-level mechanisms
(e.g., communication or voting). In an attractive scenario, these building blocks
would lead to economically viable OTS product lines of standardised, com-
paratively simple, highly dependable products, possibly shared among various
high-dependability applications. Notable example include the Time-Triggered
Architecture (TTA) [87], increasingly adopted in the automotive industry, safe-
tycritical railway applications and avionics, and the proposal by Avižienis [11]
described further down.

The rest of this section outlines important current lines of research on achiev-
ing system resilience with OTS components, and then, in more detail, some more
recent contributions [12, 21, 59].

6.2 Lines of research on resilience with OTS components

6.2.1 Identifying vulnerabilities of OTS software, and wrapping

against them

Groups at LAAS, led by J.-C. Fabre, J. Arlat and K. Kanoun and at CMU, led
by P. Koopman and centred on the BALLISTA project, have worked on two
related areas evaluating via fault injection the vulnerabilities of COTS items
(POSIX-compliant operating systems, the Chorus microkernel and the CORBA
notification service), and specifying wrappers to “cover” such vulnerabilities [1,
9, 45, 88, 102, 114].

The related HEALERS project at AT&T (C. Fetzer’s group) aimed to pro-
tect library components by automatically generated wrappers (C macros) that
intercept calls and check the validity of call parameters and results [56].

M. Swift’s group at Univ. of Washington developed Nooks, a subsystem
that wraps the Linux kernel and detects improper system calls and predefined
exceptions [133].

In these early, influential studies the emphasis was on ad hoc development of
wrappers rather than on defining explicit general goals and assessment criteria.
For instance, some of this literature does not acknowledge the potential for
the wrappers themselves failing, and thus the need to assess at which point
increasing the amount of scrutiny performed by wrappers on communications

20



between components becomes pointless or even counterproductive.
With respect to this last deficiency, the recently completed U.K. project

DOTS (a collaboration between the ReSIST members Newcastle and City),
produced advances in providing a framework for dealing rigorously with the
deficiencies of COTS software. A methodical approach was developed in which
protective wrapping was seen as a way of structuring fault tolerance with OTS
components [141], to address explicitly the mismatch between what is required
from OTS items in a specific system context and what is known about the
available candidate OTS items. The approach was demonstrated on a set of
case studies5.

While the early studies mentioned above are mainly concerned with wrap-
ping at the level of the operating systems, wrapping at other levels is also used,
e.g. at the level of application software, as discussed in the next sub-section.

Other approaches dealing with vulnerabilities detected at various levels have
also been used. The SWIFT technique [120] is a recent extension to the long
standing line of research about programmer transparent software solutions for
dealing with transient hardware faults. It is a compiler-based software trans-
formation, effective in detecting transient hardware faults, and recently ex-
tended [32] to recovery from the detected failures. Software solutions like this
offer the users of the OTS hardware, e.g. CPU and memory, a means of reducing
the negative effects of transient faults beyond the levels provided by the OTS
hardware.

The “Immune System Paradigm” proposed recently by Avižienis [11, 12] is
an example of compensating in the system architecture for the lack in modern
microprocessors of adequate support for fault tolerance.

6.2.2 Recent work on diversity in replication-based fault-tolerant

systems

Diverse redundancy has played a major part in the effort to meet high resilience
requirements using existing (including legacy) OTS components, especially when
custom-built solutions are either impracticable (due to interconnecting previ-
ously existing legacy systems, i.e., systems of systems) or not economically vi-
able due to the limited market needs.

Accepting that fault tolerance with OTS components requires diversity, sev-
eral groups looked at various aspects of using diverse redundancy:

• B. Liskov’s group at MIT developed the BASE approach [29] extending
the “state machine” approach to fault tolerance to allow diverse replicas
of a component. A “conformance wrapper” guarantees that the states
of the diverse replicas remain consistent with an abstract common state,
translates between representations of these states, and enables states to
be saved and restored. This approach must cope with both faults and
permitted behaviour variations between the diverse components; it aims
at tolerating Byzantine faults. A prototype demonstrator was developed
at MIT for an NFS file system.

• In the above mentioned DOTS Project, the City team undertook an empir-
ical study with complex OTS products, such as several popular database

5http://www.csr.ncl.ac.uk/dots/bibliog.html

21

http://www.csr.ncl.ac.uk/dots/bibliog.html


servers, to assess the viability of design diversity with these products and
to evaluate, via measurement, the potential benefits in terms of both de-
pendability [58] and performance [130] gains from deploying diversity.

• The “Immune System Paradigm” by Avižienis, mentioned above, provides
support for both identical and diverse multichannel computation.

Further insight into design decisions about which fault-tolerant architectures
are appropriate came from studies targeted at measuring the actual prevalence
of various failure modes in OTS software with the following important contri-
butions:

• At the Univ. of Michigan, Chen and colleagues used several open-source
products to study the appropriateness of general purpose recovery schemes
[31]. They recorded empirical evidence of serious limitation of these
schemes and evidence that a significant proportion of reported faults for
the products studied lead to non-crash failures, which reinforces the need
for diversity;

• At the University of Illinois at Urbana-Champaign, Ravi Iyer and col-
leagues recorded empirical evidence of a strong indication of error depen-
dency or error propagation across a network of NT servers [145];

• The City team [58, 59] provided direct empirical evidence of fault diversity
with OTS database servers.

6.2.3 Diversity for security

This topic is covered in more detail in the chapter on Intrusion Tolerance of [40].
The text here is limited to aspects related to the use of diversity with OTS
components to improve security.

The security research community directly embraces the notion of protec-
tive wrapping, and has also developed a considerable interest in fault tolerance
via diversity to compensate for the (security) deficiencies of OTS components.
Three important research strands have been:

• the DARPA sponsored OASIS project in the USA (which developed proto-
type architectures, e.g. [57] for web sites made attack-resistant via multiple
diverse copies of a web server),

• the European MAFTIA project, coordinated by Newcastle and including
other ReSIST members (University of Lisboa, IBM Zurich, LAAS), which
delivered a reference architecture, a rationalised terminology framework,
and supporting mechanisms,

• the DIT project, in which LAAS-CNRS was involved (associated to SRI
International). The project developed a prototype architecture and im-
plementation of an adaptive intrusion tolerant web server using diversity6.

While significant advances have been made in design and verification of fault
tolerance for improved security, progress in the area of quantitative evaluation
remains limited [94].

6http://www.csl.sri.com/projects/dit

22

http://www.csl.sri.com/projects/dit


6.2.4 Adaptive Fault Tolerance

An important aspect of achieving resilience of computer-based systems, includ-
ing those developed with OTS components, is managing the evolution of the
system configuration or environment during the systems’ lifetime. A special
case of evolution is the change of the deployed fault tolerance mechanisms.
Traditionally, such changes would be implemented statically, i.e., changing the
system configuration off-line. Changing the deployed mechanism at runtime,
however, has also been explored. The main technical problems with such an
approach were outlined and discussed in [83]:

• the difficulty to adapt the mechanisms by means of architectural and/or
algorithmic solutions;

• the adaptation efficiency, i.e., the ability to monitor the operational con-
ditions and to react to configuration/environment changes.

Projects such as ROAFTS [84], MEAD [111] and AQuA [123] propose so-
lutions based on middleware, which allows for transparent switching from one
mechanism variant to another at the expense of some performance penalty, i.e.,
by temporarily freezing the service delivered to the user. Chameleon [75] follows
the same approach. The adaptation executed by a Fault Tolerance Manager re-
sponsible for collecting the user requirements and other pertinent information
and then deciding which of the available fault tolerance mechanism will be used.
In such systems, adaptation is often driven by thresholds, e.g., as in MEAD [49]
and ROAFTS. In AQuA, instead, the adaptation is driven by the QoS crite-
ria defined by the clients of the services (e.g., in terms of crash and/or value
failures). For instance, the requested availability can be obtained by increasing
the number of replicas. Another interesting study [61] advocates an “Adaptive
Fault Resistant System”; it can be seen as a survey of some possible approaches
to address the problem of adaptation (e.g., adaptive recovery blocks) and open
issues (e.g., reflection as in FRIENDS [54, 134]).

In ReSIST, work carried out at LAAS relies on the notion of multi-level
reflective architectures [134] to perform the on-line adaptation. The objective is
to limit the impact of the modifications on the service delivered to the user, i.e.,
without freezing the system but by introducing degraded modes of operation
at the non-functional level. This work tackles both the architectural and algo-
rithmic issues to simplify the design and the implementation of on-line adaptive
mechanisms.

6.2.5 Infrastructure management

An important aspect of achieving resilience of systems built with OTS compo-
nents is the so called infrastructure management, a collective label for a multi-
tude of administration tasks and processes and the tools enabling them. Adopt-
ing standards of infrastructure management promotes interoperability and best
practices and thus reduces the likelihood of misconfiguration of complex systems
of OTS components and as a result — poor system performance.

The most widespread infrastructure management standards today are Simple
Network Management Protocol (SNMP), Web Based Enterprise management
(WBEM) and Java Management Extensions (JMX), which are described briefly
below:

23



• SNMP [69] is widely spread both in terms of usage and industry support.
SNMP is best suited for the management of networks and network ele-
ments. It is also adapted for computational platform management, but
the lack of real object-oriented information representation and security
issues makes it inferior compared with the other two solutions.

• WBEM [47] was developed by the Distributed Management Task Force
(DMTF), a subsidiary of the Object Management Group (OMG). WBEM
is a truly object oriented and model based management standard with a
UML-compatible information model — the Common Information Model
(CIM). However, although the standards comprising WBEM are available
for years now and being supported by the major software vendors its
industrial penetration has been limited except for Microsoft Windows NT
operating systems. The Windows Management Instrumentation (WMI)
is partly a CIM compliant implementation.

• JMX [132] is an extension of the Java runtime platform with management
and manageability capabilities. While .NET utilises WMI, for Java a
standard defines the Java Management Extensions framework (JMX). The
standard is heavily used by the major Java-based application servers, e.g.,
WebSphere, Apache Tomcat etc.

6.3 Recent Research Work in ReSIST

6.3.1 An Immune System Paradigm for the Assurance of Depend-

ability of Collaborative Self-Organizing Systems

This contribution by the Vytautas Magnus University team addresses an im-
portant problem of enhancing the limited support for fault tolerance built in
the modern microprocessors and other hardware OTS components.

Most currently available microprocessors and other hardware OTS compo-
nents have very limited fault tolerance (i.e., error detection and recovery) func-
tions. They also do not possess built-in support for redundant multi-channel
(duplex, triplex, etc.) computation either with identical, or with diverse hard-
ware and software in the channels. Recently Avižienis has proposed [11] a
network of four types of Application-Specific Integrated Circuits (ASIC) com-
ponents called the fault tolerance infrastructure (FTI) that can be used to embed
OTS hardware residing in one package (board, blade, etc.) and provide it with
a means to receive error signals from and to issue recovery commands to the
OTS components. Furthermore the FTI provides support for both identical and
diverse multichannel computation. The FTI employs no software and is fault-
tolerant itself. The design principle of the FTI is called the immune system
paradigm because the FTI can be considered to be analogous to the immune
system of the human body “hardware”.

The most recent work presented here [12] applies the FTI concept to the
protection of collaborative self-organizing systems composed of relatively sim-
ple autonomous agents that act without central control. Because of the changing
structure of such systems the application of consensus algorithms for fault tol-
erance becomes impractical, while the FTI provides fault tolerance individually
for every agent, and consensus algorithms are not needed to protect the entire
self-organizing system.

24



6.3.2 Towards an Engineering Approach to Component Adaptation

This report by the Newcastle team addresses an important problem in building
dependable systems by integrating ready-made components: how to deal with
various mismatches between components [21]. These mismatches are unavoid-
able because the components are not built directly for the context in which
they are used and because developers of various components typically make
a number of assumptions about the context which are not consistent or even
conflicting. The well-known solution to these problems is introducing adap-
tors mediating component interactions. Component adaptation needs to be
taken into account when developing trustworthy systems, where the properties
of component assemblies have to be reliably obtained from the properties of its
constituent components. The adaptor development is still an ad hoc activity, so
a more systematic approach to component adaptation is required when building
trustworthy systems. In this paper, the authors show how various design and
architectural patterns can be used to achieve component adaptation and thus
serve as the basis for such an approach. The paper proposes an adaptation
model, which is built upon a classification of component mismatches and identi-
fies a number of specific patterns to be used for eliminating them. It concludes
by outlining an engineering approach to component adaptation that relies on
the use of patterns and provides an additional support for the development of
trustworthy component-based systems.

6.3.3 Fault tolerance via diversity for off-the-shelf products: a study

with SQL database servers

This report by the City team is a recent update of previous work on fault
diversity [58], which presented empirical evidence that design diversity could
offer significant dependability gains for OTS relational database management
systems (SQL servers) [59]. The report presents results from a second study
with more recent faults reported for two open source SQL servers, PostgreSQL
and Firebird, the two most advanced and widely used open-source SQL-servers,
which have been reproduced on SQL servers from other vendors. The results
observed are consistent with the results reported earlier in [58]:

• very few faults cause simultaneous failure in more than one server.

• the failure detection rate in this study is 100% with only 2 diverse server
being used.

• The proportion of crash failures is < 50%, consistent with the first study
and contrary to the common belief that crash failures are the main con-
cern. Such a high proportion of non-crash failures sheds a serious doubt as
to how effective protection is provided by the known database replication
solution, developed to tolerate crash failures only.

Ways of diagnosing the failed server were also studied, in the cases this is not
evident (e.g., non-crash failures). A variant of data diversity [4] was found to
be a promising way of building an efficient rule-based diagnosing system, which
only requires a handful of rules to diagnose successfully the failed servers for all
faults included in the study [60].

25



7 Dependability Benchmarking

Operating a Grid requires continuous monitoring and testing, both for per-
formance and functionality. This section covers research in the novel field of
dependability benchmarking [40].

7.1 Introduction

Performance benchmarks are widely used to evaluate system performance while
dependability benchmarks are hardly emerging. Several popular performance
benchmarks exist for many specific domains that constitute invaluable tools
to objectively assess and compare computer systems or components. This is
a well-established area that is led by organizations such as the TPC7 (Trans-
action Processing Performance Council) and SPEC8 (Standard Performance
Evaluation Corporation), and supported by major companies in the computer
industry [64]. Benchmarking the dependability of a system consists in evalu-
ating dependability or performance-related measures, experimentally or based
on experimentation and modelling, in a well-structured and standardized way.
The development and conduct of benchmarks are still at an early stage in spite
of major efforts and progress made in recent years both by the IFIP WG 10.4
SIG on Dependability Benchmarking9 and within the IST project DBench10 to
which several ReSIST partners are contributing or have contributed.

To be meaningful, a benchmark should satisfy a set of properties (represen-
tativeness, repeatability, portability, cost-effectiveness, etc.).

7.2 Dependability benchmarking approaches

Dependability benchmarking involves a new dimension to the Workload and
(performance) Measure dimensions that typically characterize a performance
benchmark: the Faultload. The Faultload defines the types of faults that are
combined with the Workload to exercise the target system being benchmarked
to obtain relevant Measures. In addition to performance measurements, more
specifically performance degradation in presence of faults, the relevant measures
attached to dependability benchmarking encompass a wide variety of facets
including the assessment of system resilience, the characterization of failure
modes and error signalling, the estimation of restart times, etc.

Dependability benchmarks are usually based on modelling and experimen-
tation, with tight interactions between them. In particular, analysis and classi-
fication of failure data can support the identification of realistic faultloads for
the experimentation. On the other hand, measurements collected during exper-
iments can be processed via analytical models to derive dependability measures.
Some possible benchmarking scenarios can be sketched in reference to Figure 2,
where layers identify the three steps analysis, modelling and experimentation
and arrows A to E represent the corresponding activities and their interrela-
tions [78]. For example a scenario consisting of modelling supported by exper-
imentation would include the three steps and links A, B and E; in that case,

7www.tpc.org
8www.spec.org
9www.dependability.org/wg10.4/SIGDeB

10www.laas.fr/DBench

26



the expected outputs are comprehensive measures obtained from processing the
models.

Figure 2: Dependability benchmarking steps and activities.

Favouring the combined effects of the workload and the faultload in order
to reduce the cases of nonsignificant experiments (e.g., see [140]) involves com-
plex composability analyses. Nevertheless, it is worth noting that the careful
study of the interactions between the workload and the faultload is also cen-
tral to the work addressing verification via robustness testing. Accordingly,
cross-fertilization from these studies is expected to develop more efficient de-
pendability benchmarks.

To be useful and widely accepted by the community as a means to obtain
a fair assessment and comparison of systems in a given class, dependability
benchmarks must fulfil a set of specific properties. These properties must be
taken into consideration from the earliest phase of the benchmark specification.
The main relevant properties are briefly identified hereafter:

Representativeness: A benchmark must reflect the typical use of the tar-
get system. This requirement is a key issue and encompasses all the depend-
ability benchmarking dimensions:

• It is essential that the workload profile used in the benchmark includes a
realistic set of the activities found in real systems for the application area
being considered. In practice, this aspect is often handled by considering
existing performance benchmarks to implement the Workload.

• Faultload representativeness relies on how well injected faults correspond
to real faults, i.e., faults affecting the target system in real use. Field data
is the best way to validate whether a set of faults is to be considered in
the faultload. The problem is that field data on the underlying causes of
computer failures is often not widely available. The emergence of Open
Source Software (OSS) paradigms and the wide usage of such OSS com-
ponents provide new opportunities to address this issue. It is pertinent to
note that previous works are available in the dependability literature that
has been used to achieve confidence on the representativeness of a given
faultload (e.g., see [34, 35, 51, 10, 72, 127]).

• Measure representativeness has to do with the adequacy of i) the features
that are reported [144, 19], ii) the measurements that are carried out and

27



optionally of their post processing to derive comprehensive measures (as
illustrated by Figure 1), with the service expected from target system
and its usage. In particular, the life cycle and the category of end-user
to which the benchmark is focused, have an impact on the relevance of
the measures. In practice, multidimension measures are preferred to an
averaged figure. Indeed, in the first case, it is still possible to tailor the
interpretation to suit end-user primary requirements (e.g., error reporting
or continuity of service) [52, 1].

Repeatability: The results obtained for a specific application of the bench-
mark should be repeatable (within acceptable statistical margins) for the same
system set up, even if executed by different end-users. This is clearly a prerequi-
site for the credibility of the benchmark. The resulting impact of this property
differs whether the considered benchmark is provided under the form of a spec-
ification (TPC-like approach) or under the form of an executable prototype
(SPEC-like approach).

Portability: This property is intrinsic to the concept of benchmark that by
definition must be executed on various target systems. Portability depends on
the way some key benchmark dimensions (such as the faultload and workload)
are specified. For example, the more general the faultload is defined the more
easily portable will be the benchmark. In practice, the underlying technology
(fault injection mechanisms, measurement tools, etc.) must be portable to dif-
ferent platforms. The availability of standard interfaces greatly facilitates the
fulfilment of this property.

Non-intrusiveness: The implementation of the benchmark in the experi-
mentation step (particularly to what concerns the faultload and the measure-
ments) should induce no or really minimal change to the benchmark target
(either at the structure level or at the behaviour level). One implication in or-
der to satisfy non-intrusiveness results in a practical rule that is to avoid fault
injection within the benchmark target11. However, faults can be injected in the
parts surrounding the benchmark target. The respect of this property has a
restrictive impact on the granularity of the faultload and of the time measure-
ments that can be carried out and reported.

Cost effectiveness: The effort in time and cost necessary to run the bench-
mark should be reasonably low, otherwise many users could be prevented from
using it. It is worth noting that the benchmarking time consists of three parts: i)
set-up and preparations, ii) running the actual benchmark (i.e., execution time)
and iii) data analysis. Ideally one would acclaim benchmarks that are able
to assess the target system thoroughly and accurately, while featuring short
benchmarking times. Clearly, in practice, these properties call for a trade-off.

Scalability: The various properties of a benchmark must hold for differing
sizes of instantiations of a class of target system. In connection with the viability
property, this means in particular that time and cost of running the benchmark
must increase at a radically lower pace than the complexity and size of the target
system. Usually, scaling is achieved by defining a set of rules in the benchmark
specification. Scaling rules mostly affect the workload, but also the size of the
faultload as the latter may affect the time needed to execute the benchmark.

11It is worth noting that the impact of this restriction can be related to the robustness
attribute (i.e., dependability with respect to external faults [13]) and accordingly to the case
of robustness testing.

28



In the subsequent sections, we summarize the current status of the results
obtained on dependability benchmarking with respect to two categories of faults:
accidental faults and intrusions, both by the ReSIST partners and elsewhere.
It is worth pointing out that while quite a substantial body of research has
addressed accidental faults, benchmarking with respect to intrusions is almost
inexistent.

7.3 Accidental faults

Elaborating on the pioneering work started in the first half of the 1990s (e.g.,
see [43, 126]) several efforts have been conducted in the past decade to advance
the conceptual issues and the development of prototype dependability bench-
marks based on specific faultloads encompassing physical faults, software bugs
or, to a less extent, operator mistakes.

Physical faults have received first a special attention both from academia
and industry. In order to facilitate the conduct of the controlled experiments,
these works have significantly built on several variants of the SWIFI technique
to implement the faultload, (e.g., see [20, 76, 28, 24, 148]). Indeed, SWIFI ex-
hibits relevant features, such as low intrusiveness and good portability and it
can emulate a wide variety of hardware faults and, to some extents, software
faults as well [100]. These proposals have covered a wide spectrum of applica-
tion domains (critical embedded control systems, highly available distributed
systems) as well as various components and layers in a computer architecture
(processors, middleware, etc.) [126, 139, 102, 144, 23, 149, 122, 127, 36].

Accidental human interaction faults are reportedly a dominant factor
in many critical systems and information infrastructures. In particular, the
statistics covering the period 1959-200512. show that they steadily contribute
as the principal cause. The figures for the period 1996-2005, indicate that they
contribute as the major factor to 63% of the accidents in commercial aviation:
crew 55%, airport/air traffic control 5%, maintenance 3%. Operator faults
constitute also a significant ratio (almost 50%) of the causes of diagnosed failures
in large-scale data centres as reported in [113] that has analysed three major
Internet sites. This explains why efforts have tried to address this state of affair
by including the human-factor aspect in dependability benchmarking proposals
(e.g., see [22, 142]). These attempts are still preliminary and much work is still
needed to cope with the complexity of the task.

Software faults constitute an increasingly large share of reported service
disruptions in many application domains [145, 55, 33]. This trend is easily ex-
plained by the penetration of software-intensive computing systems in every day
usage (for example a typical cellphone now contains 2 million lines of software
code) and also in many critical applications (65 million lines are quoted for the
Airbus A380). Increased time to market pressure and the complexity attached
to the handling of large software programs impose a heavy burden on the soft-
ware life cycle (e.g., see [14, 117]). This trend also favours the reuse of previously
developed software. Accordingly, several works have addressed the dependabil-
ity characterization of Off-The-Shelf (OTS) proprietary or open source software
components including both the software executive layer (e.g., operating systems

12Statistical Summary of Commercial Jet Airplane Accidents – Worldwide Op-

erations 1959–2005, Boeing Commercial Aircraft Group, Seattle, USA, 2006
(http://www.boeing.com/news/techissues)

29



(OS) [86]) and the application layer (e.g., database management systems [142].
automotive application [122] or web services [50]). Due to their central role
in a computer architecture, special emphasis has been put on the development
of benchmarks to support the assessability and the testing of the robustness
of software executives. These especially addressed general-purpose OS kernels,
but some relevant works have also considered specific microkernels (e.g., see [9])
or the middleware layer (e.g., see [114]).

As already pointed out, several attempts have been made to propose and
implement benchmark prototypes supporting the assessability of OS kernels.
Figure 3 depicts the software architecture of a computer system and provides a
basis on which this thread of work can be illustrated. As shown on the figure,
the kernel features three main interfaces with its environment. The first one
(bottom) is basically concerned with hardware interactions, while the other two
(top and right) are software related.

Figure 3: Interactions between an OS kernel and its environment and possible
fault injection locations.

The “lightning” symbols in Figure 3 identify possible locations where faults
can be applied. These locations and related faults are briefly described as fol-
lows:

1) The main interactions concerning the bottom interface are made by raising
hardware exceptions. Several studies (e.g., see [9, 65]) have been reported in
which faults were injected by means of bit-flips into the memory of the system
under benchmark or via special debugging interfaces [122].

2) The top interface corresponds to the Application Programming Interface
(API). The main interactions are made via kernel calls. A significant number of
studies were reported that target the API to assess the robustness of OS (e.g.,
under the form of code mutations [51], by means of bit-flips [72], or by altering
the system calls [86, 74, 79]).

3) The third type of interactions are made via the interface between the
drivers and the kernel. The proposal in [52] has concentrated on drivers code
mutation. The work reported in [1] proposes a complementary alternative that
explicitly targets the exchanges made between the device drivers and the kernel
via their interface the DPI (Driver Programming Interface) [53].

30



The work reported in [77] and [80] fits item 2 above, while item 3 is exempli-
fied by the work described in [2]. These contributions illustrate the benchmark-
ing efforts targeting general purpose OS that were carried out at LAAS within
the DBench project.

7.4 Intrusions

There are no intrusion detection benchmarks per se. However, a number of
papers related to testing intrusion-detection systems have been published in the
literature. In most cases testing methodology is proposed by the developers of
a given intrusion-detection system method or tool, with the purpose of showing
their own development at its best. This type of work is considered biased.
We put emphasis on three testing approaches: the Lincoln Lab experiments,
university and research testing environments and commercial environments, that
are more detailed hereafter.

7.4.1 The Lincoln Lab experiments

One of the best known testing experiments in the intrusion-detection community
is the Lincoln Lab experiment [93, 92]. The initial purpose of this experiment
is to test the various intrusion-detection technologies developed under DARPA
funding, and to compare them in order to choose the most appropriate one. This
is achieved by simulating a network of workstations to create normal traffic
and by inserting a set of attacks carefully chosen to cover various situations,
summed up as remote attacks, local attacks and denial-of-service attacks. This
experiment has received scientific criticism from the community, most notably
in Reference [105]. Our main criticisms are:

• Focus on background traffic: As the test includes behaviour-based intrusion-
detection systems, realistic background data must be generated to ensure
that these systems will be properly trained. However, while background
traffic generation is required for performance testing, the Lincoln Lab
testbed does not provide a way of calibrating the characteristics of this
background traffic and verifying their compliance with specifications.

• Focus on a broad set of attacks: The Lincoln Lab tests aimed at exercising
the largest possible set of attacks for the largest possible set of intrusion-
detection systems. However, in some contexts one would like to focus on
network traffic close to firewalls. Such kind of analysis cannot be done
based on the Lincoln Lab tests that are too wide for such a use.

• Lack of reference point or baseline: The Lincoln Lab tests compare proto-
types in a closed circle. There is no notion of a minimal set of requirements
that a tested tool has to meet, only relative data comparing them with
each other. The lack of a baseline that all tools would have to fulfil was
felt as particularly lacking in the Lincoln Lab experiment.

7.4.2 University and research testing environments

The most representative work concerning university tests has been carried at
the U. of California at Davis [118, 119] with related and de facto similar work
at IBM Zurich [42].

31



The objective of the UC Davis test is to simulate the activity of normal users
and the activity of attackers, using script written in the expect language. Expect
simulates the presence of a user by taking over the input and output streams of
a tty-based application, matching expected responses from the application with
the displayed output, and feeding appropriate input as if the user typed it on
its keyboard.

A similar approach was followed at IBM Zurich. In addition to user-recorded
scripts the IBM approach introduced software testing scripts from the DejaGnu
platform (also in expect) to ensure that all aspects of an application were exer-
cised, regardless of the fact that they were obscure features of an application or
not.

7.4.3 Commercial testing environments

Tests classified as commercial include tests published by commercial test labora-
tories mandated by a particular company, and tests carried out by independent
publications.

Several test labs have published test results related to intrusion-detection
systems. In particular, Mier Communications has released at least two test
reports, a comparative of BlackICE Sentry, RealSecure and NetProwler on one
hand, and a test of Intrusion.com SecurenetPro Gigabit appliance. Appropriate
queries on mailing list archives show that these test results have been the subject
of many controversies. The general feeling is that it is appropriate for the
testing laboratory to provide results that highlight the advantages of the product
sponsored by the company financing the tests. Even if direct test manipulation
is not suspected, at least test configurations for the competing products is likely
not to be handled by experts, thus resulting in unfair comparison.

Our feeling is that even this cannot be determined, as the description of
the tests is very sparse and does not provide information that would allow an
impartial judgement of the tests. Normal traffic generation, for example, is done
using commercial products and the test report is considered complete with only
the mention of the name of the traffic generator, without any information on
the kind of traffic it generates or its configuration.

Journalists have also been involved in the testing of intrusion-detection sys-
tems. The most interesting article that we have found is by Mueller and Ship-
ley [109]. It is the only comparative test of commercial intrusion-detection
systems that we have found, where a number of intrusion-detection products
are compared on equal footing and on live traffic, hence with a higher probabil-
ity of either missing attacks or triggering false positives. The main drawback of
this kind of test is reproducibility: when observing alerts it is quite difficult to
reproduce the conditions in which these alerts are generated. Also, we believe
that the tuning phase carried out during testing initiation is problematic; the
testers describe a process in which alerts that they believe are false are turned
off.

The most serious work related to Intrusion-Detection Systems / Intrusion-
Prevention Systems testing is regularly published since 2004 by the NSS group
(http://www.nss.co.uk). They regularly select a set of Intrusion-Detection Sys-
tems / Intrusion-Prevention Systems appliances and provide comparative test-
ing of performance and detection capabilities. Their findings are a widely used
source of information for Intrusion- Detection Systems / Intrusion-Prevention

32



Systems buyers, but the rationale for selecting the tested appliances seems un-
clear. A complete description of their methodology is available on their web
site.

Conclusions

This report collects large excerpts from two deliverables produced by the ReSIST
NoE, selected and edited in order to provide a compact introduction to research
work on dependability that is expected to be applicable in the field of Grid
computing. The report is by no means exhaustive, and much relevant work has
been surely left out, but the editors are confident that this document can be a
useful tool for people concerned with the dependability of Grid infrastructures.

Readers are encouraged to read the original documents in order to get a
wider and more complete view of the field of resilience-explicit computing.

References

[1] A. Albinet et al. Characterization of the Impact of Faulty Drivers on the
Robustness of the Linux Kernel. In IEEE/IFIP Int. Conf. on Dependable
Systems and Networks (DSN-2004), pages 867–876, 2004.

[2] A. Albinet et al. Robustness of the Device DriverKernel Interface: Appli-
cation to the Linux Kernel. IEEE CS Press, 2008.

[3] E. Alwagait and S. Ghandeharizadeh. Dew: A dependable web services
framework. In 14th International Workshop on Research Issues on Data
Engineering: Web Services for E-Commerce and E-Government Applica-
tions, 2004.

[4] P. E. Ammann and J. C. Knight. Data diversity: An approach to software
fault tolerance. IEEE Transactions on Computers, C-37(4):418–425, 1988.

[5] S. Anderson et al. Web services secure con-
versation language (ws-secureconversation), version
1.1. http://specs.xmlsoap.org/ws/2004/04/sc/

ws-secureconversation.pdf, 2004.

[6] S. Anderson et al. Web Services Trust Language (WS-Trust).
http://www6.software.ibm.com/software/developer/library/

ws-trust.pdf, 2005.

[7] T. Andrews et al. Business process execution language for web services,
version 1.1, 2003.

[8] A. Andrieux et al. Web services agreement specification (ws-agreement),
version 1.1, 2004. Draft 18.

[9] J. Arlat et al. Dependability of cots microkernel based systems. IEEE
Transactions on Computer Systems, 51(2):138–163, 2002.

33



[10] J. Arlat et al. Comparison of physical and softwareimplemented fault
injection techniques. IEEE Transactions on Computers, 52(8):1115–1133,
2003.

[11] A. Avižienis. A fault tolerance infrastructure for dependable computing
with high-performance cots components. In 2000 International Conference
on Dependable Systems and Networks, pages 492–500, 2000.

[12] A. Avižienis. An immune system paradigm for the assurance of depend-
ability of collaborative self-organizing systems. In IFIP 19th World Com-
puter Congress, 1st IFIP International Conference on Biologically Inspired
Computing, pages 1–6, 2006.

[13] A. Avižienis et al. Basic concepts and taxonomy of dependable and se-
cure computing. IEEE Tansactions on Dependable and Secure Computing,
1(1):11–33, 2004.

[14] M. W. Bailey and J. W. Davidson. Automatic detection and diagnosis
of faults in generated code for procedure calls. IEEE Transactions on
Software Engineering, 29(11):1031–1042, 2003.

[15] S. Bajaj et al. Web services federation language (wsfederation), version
1.0. http:///www6.software.ibm.com/software/developer/library/
ws-fed.pdf, 2003.

[16] S. Bajaj et al. Web services policy framework (wspolicy), version 1.2.
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/

ws-polfram/wspolicy-2006-03-01.pdf, 2006.

[17] A. Banerji et al. Web services conversation language (wscl) 1.0.
http://www.w3.org/TR/wscl10/, 2002. W3C Recommendation.

[18] M. Bartel et al. Xml-signature syntax and processing.
http://www.w3.org/TR/xmldsig-core/, 2002. W3C Recommenda-
tion.

[19] W. Bartlett and L. Spainhower. Commercial fault tolerance: A tale of
two systems. IEEE Tansactions on Dependable and Secure Computing,
1(1):87–96, 2004.

[20] J. H. Barton et al. Fault injection experiments using FIAT. IEEE Trans-
actions on Computers, 39(4):575–582, 1990.

[21] S. Becker et al. Towards an Engineering Approach to Component Adapta-
tion. In Architecting Systems with Trustworthy Components, volume 3938
of LNCS, pages 193–215. Springer, 2006.

[22] A. B. Brown et al. Including the human factor in dependability bench-
marks. In Dependable Systems and Networks (DSN2002) – Workshop on
Dependability Benchmarking, pages F9–F14, 2002. Supplemental volume.

[23] K. Buchacker et al. Reproducible dependability benchmarking ex-
periments based on unambiguous benchmark setup descriptions. In
IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN-2003),
pages 469–478, 2003.

34



[24] K. Buchacker and V. Sieh. UMLinux — a versatile SWIFI tool. In 4th
European Dependable Computing Conference (EDCC4), pages 159–171.
Springer, 2002.

[25] L. F. Cabrera et al. Web services atomic
transaction (wsatomictransaction), version 1.0.
http://www-128.ibm.com/developerworks/library/specification/

ws-tx/#atom, 2005.

[26] L. F. Cabrera et al. Web services business ac-
tivity framework (ws-businessactivity), version 1.0.
ftp://www6.software.ibm.com/software/developer/library/

WS-BusinessActivity.pdf, 2005.

[27] L. F. Cabrera et al. Web services co-
ordination (wscoordination), version 1.0.
http://www-128.ibm.com/developerworks/library/specification/

ws-tx/#atom, 2005.

[28] J. Carreira et al. Xception: A technique for the experimental evaluation
of dependability in modern computers. IEEE Transactions on Software
Engineering, 24(2):125–136, 1998.

[29] M. Castro et al. BASE: Using Abstraction to Improve Fault Tolerance.
ACM Transactions on Computer Systems, 21(3):236–269, 2003.

[30] A. Ceponkus et al. Business transaction protocol, version 1.0.
http://www.oasisopen.org/committees/download.php/1184/

2002-06-03.BTP cttee spec 1.0.pdf, 2002. OASIS Committee
Specification.

[31] S. Chandra and P. M. Chen. Whither Generic Recovery from Application
Faults? A Fault Study using Open-Source Software. In International
Conference on Dependable Systems and Networks, 2000.

[32] J. Chang et al. Atomic Instruction-Level Software-Only Recovery. In
International Conference on Dependable Systems and Networks, pages 83–
92, 2006.

[33] R. N. Charette. Why software fails. IEEE Spectrum, September 2005.

[34] J. Christmansson and R. Chillarege. Generation of an Error Set that Em-
ulates Software Faults Based on Field Data. In 26th Int. Symp. on Fault-
Tolerant Computing (FTCS26), pages 304–313. IEEE CS Press, 1996.

[35] J. Christmansson et al. An Experimental Comparison of Fault and Er-
ror Injection. In 9th Int. Symp. on Software Reliability Engineering (IS-
SRE’98), pages 369–378. IEEE CS Press, 1998.

[36] C. Constantinescu. Dependability benchmarking using environmental test
tools. In Annual Reliability and Maintainability Symp. (RAMS’05), pages
567–571. IEEE Computer Society Press, 2005.

35



[37] O. Corcho et al. Metadata management in s-ogsa. In International
Workshop on Collective Intelligence for Semantic and Knowledge Grid
(CISKGrid 2007), 2007.

[38] D. Cotroneo et al. Improving dependability of service oriented architec-
tures for pervasive computing. In Eighth IEEE International Workshop
on Object-Oriented Real- Time Dependable Systems, 2003.

[39] Support for Resilience-Explicit Computing — first edition. Technical re-
port, ReSIST, September 2007. Deliverable D11.

[40] Resilient-Building Technologies: State of Knowledge. Technical report,
ReSIST, September 2006. Deliverable D12.

[41] E. Ribeiro de Mello et al. Secure and provable service support for human-
intensive real-estate processes. In IEEE International Conference on Ser-
vices Computing, pages 495–502, 2006.

[42] H. Debar et al. Reference Audit Information Generation for Intrusion
Detection Systems. In IFIPSEC’98, pages 405–417, 1998.

[43] L. S. DeBrunner and F. G. Gray. A methodology for comparing fault tol-
erant computers. In 26th Asilomar Conf. on Signals, Systems and Com-
puters, pages 999–1003. IEEE Computer Society Press, 1992.

[44] X. Defago et al. Totally Ordered Broadcast and Multicast Algorithms: A
Comprehensive Survey. Technical Report DSC/2000/036, Dept. of Com-
munication Systems, EPFL, 2000.

[45] J. DeVale and P. Koopman. Robust Software — No More Excuses. In In-
ternational Conference on Dependable Systems and Networks, pages 145–
154, 2004.

[46] V. Dialani et al. Transparent fault tolerance for web services base archi-
tectures. In 8th International Europar Conference, pages 889–898, 2002.

[47] Web-Based Enterprise Management (WBEM).
http://www.dmtf.org/standards/wbem/, 2004.

[48] N. Dulay et al. Self-managed cells for ubiquitous systems. In Third Inter-
national Workshop on Mathematical Methods, Models, and Architectures
for Computer Network Security, pages 1–6. Springer, 2005.

[49] T.A. Dumitras et al. Architecting and Implementing Versatile Depend-
ability. In Architecting Dependable Systems III, volume 3549 of LNCS,
pages 212–231. Springer, 2003.

[50] J. Durães et al. Dependability benchmarking for Webservers. In 23rd
International Conference on Computer Safety, Reliability and Security
(SAFECOMP2004), 2004.

[51] J. Durães and H. Madeira. Emulation of Software Faults by Selective Mu-
tations at Machinecode Level. In 13th Int. Symp. on Software Reliability
Engineering (ISSREE2002), pages 329–340. IEEE CS Press, 2002.

36



[52] J. Durães and H. Madeira. Mutidimensional characterization of the impact
of faulty drivers on the operating systems behavior. IEICE Tansactions
on Information and Systems, E86-D(12):2563–2570, 2003.

[53] D. Edwards and L. Matassa. An approach to injecting faults into hardened
software. In Ottawa Linux Symposium, pages 146–175, 2002.

[54] J.-C. Fabre and T. Perennou. A metaobject architecture for fault-tolerant
distributed systems: The FRIENDS approach.

[55] Norman E. Fenton and N. Ohlsson. Quantitative analysis of faults and
failures in a complex software system. IEEE Transactions on Software
Engineering, 26(8):797–814, 2000.

[56] C. Fetzer and Z. Xiao. HEALERS: A Toolkit for Enhancing the Robust-
ness and Security of Existing Applications. In International Conference
on Dependable Systems and Networks, pages 317–322, 2003.

[57] T. Fraser et al. Hardening COTS Software with Generic Software Wrap-
pers. In Foundation of Intrusion Tolerant Systems — Organically Assured
and Survivable Information Systems (OASIS), pages 399–413, 2003.

[58] I. Gashi et al. Fault Diversity Among Off-the-shelf SQL Database Servers.
In International Conference on Dependable Systems and Networks, pages
389–398, 2004.

[59] I. Gashi et al. Fault tolerance via diversity for off-the-shelf products: A
study with sql database servers. Manuscript, 2006.

[60] I. Gashi and P. Popov. Rephrasing Rules for Off-The-Shelf SQL Database
Servers. In 6th European Dependable Computing Conference, 2006.

[61] J. Goldberg et al. Adaptive Fault-Resistant Systems. Technical Report
SRI-CSL-95-02, SRI International Computer Science Laboratory, 1995.

[62] L. Gonczy and D. Varro. Modeling of reliable messaging in service oriented
architectures. In International Workshop on Web Services Modeling and
Testing, pages 35–49, 2006.

[63] A. Gorbenko et al. Development of Dependable Web Services out of Un-
dependable Web Components. Technical Report CS-TR-863, School of
Computing Science, University of Newcastle upon Tyne, 2004.

[64] J. Gray, editor. The Benchmark Handbook for Database and Transaction
Processing Systems. Morgan Kaufmann, 1993.

[65] W. Gu et al. Characterization of Linux kernel behavior under errors. In
IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN-2003),
pages 459–468, 2003.

[66] M. Gutiérrez et al. Access in grids with ws-daiont and the rdf(s) realiza-
tion. In Semantic Grid Workshop, GGF16, Athens, 2006.

[67] O. Hasan and B. Char. A deployment-ready solution for adding quality-
of-service features to web services. In The 2004 International Research
Conference on Innovations in Information Technology, 2004.

37



[68] Security in a web services world: A proposed architecture and roadmap.
http://www-106.ibm.com/developerworks/webservices/library/

ws-secmap/, 2002. Joint White Paper from IBM Corporation and
Microsoft Corporation.

[69] Simple Network Management Protocol. Technical Report RFC 3411,
IETF, 1991.

[70] T. Imamura et al. Xml encryption syntax and processing.
http://www.w3.org/TR/xmlenc-core/, 2002. W3C Recommendation.

[71] D. B. Ingham et al. Constructing dependable web services. IEEE Internet
Computing, 4(1):25–33, 2000.

[72] T. Jarboui et al. Impact of internal and external software faults on
the Linux kernel. IEICE Transactions on Information and Systems,
E86D(12):2571–2578, 2003.

[73] M. Jeckle and B. Zengler. Active uddi - an extension to uddi for dynamic
and fault-tolerant service invocation. In Web, Web-Services, and Database
Systems 2002, pages 91–99, 2003.

[74] A. Kalakech et al. Benchmarking the dependability of Windows NT, 2000
and XP. In IEEE/IFIP Int. Conf. on Dependable Systems and Networks
(DSN-2004), pages 681–686, 2004.

[75] Z. T. Kalbarczyk et al. Chameleon: A software infrastructure for adaptive
fault tolerance. IEEE Transactions on Parallel and Distributed Systems,
10(6):560–579, 1999.

[76] G. A. Kanawati et al. FERRARI: A flexible softwarebased fault and error
injection system. IEEE Transactions on Computers, 44(2):248–260, 1995.

[77] K. Kanoun and Y. Crouzet. Dependability benchmarks for operating
systems. International Journal of Performability Engineering, 2(3):275–
287, 2006.

[78] K. Kanoun et al. A framework for dependability benchmarking. In De-
pendable Systems and Networks (DSN2002) – Workshop on Dependability
Benchmarking, pages F7–F8, 2002. Supplemental volume.

[79] K. Kanoun et al. Benchmarking the Dependability of Windows and Linux
using PostMark Workloads. In 16th Int. Symp. on Software Reliability
Engineering (ISSREE2005), pages 11–20. IEEE CS Press, 2005.

[80] K. Kanoun et al. Windows and Linux Robustness Benchmarks With Re-
spect to Application Erroneous Behavior. IEEE CS Press, 2008.

[81] Z. Kaoudi et al. Semantic grid resource discovery in atlas. In Knowledge
and Data Management in GRIDs, pages 185–199. Springer US, 2007.

[82] G. Karjoth et al. Service-oriented Assurance-Comprehensive Security by
Explicit Assurances. In 1st Workshop on Quality of Protection, LNCS.
Springer, 2006.

38



[83] K. Kim and T. Lawrence. Adaptive Fault Tolerance: Issues and Ap-
proaches. In Second IEEE Workshop on Future Trends of Distributed
Computing Systems, pages 38–46, 1990.

[84] K. Kim and C. Subburaman. ROAFTS: A Middleware Architecture
for Real-Time Object-Oriented Adaptive Fault Tolerance Support. In
Third IEEE High Assurance Systems Engineering Symposium, pages 50–
57, 1998.

[85] Y. Kim et al. Ontology based software reconfiguration in a ubiquitous
computing environment. In 6th IEEE International Conference on Com-
puter and Information Technology (CIT’06), 2006.

[86] P. Koopman and J. DeVale. Comparing the robustness of posix operat-
ing systems. In 29th Annual International Symposium on Fault-Tolerant
Computing, 1999.

[87] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of
the IEEE, 91(1):112–126, 2003.

[88] N. P. Kropp et al. Automated robustness testing of off-the-shelf software
components. In 28th International Symposium on Fault-Tolerant Com-
puting, pages 230–239, 1998.

[89] J.-C. Laprie et al. Analysis of hardware and software fault-tolerant archi-
tectures. IEEE Computer, 23(7):39–51, 1990.

[90] F. Leymann. Web services flow language (wsfl 1.0).
http://www-3.ibm.com/software/solutions/webservices/pdf/

WSFL.pdf, 2001.

[91] D. Liang et al. Ft-soap: A fault-tolerant web service. In Tenth Asia-Pacific
Software Engineering Conference (APSEC’03), 2003.

[92] R. Lippmann et al. Analysis and Results of the 1999 DARPA OffLine
Intrusion Detection Evaluation. In RAID 2000, pages 162–182, 2000.

[93] R. Lippmann et al. Evaluating intrusion detection systems: The 1998
DARPA offline intrusion detection evaluation. In DARPA Information
Survivability Conference and Exposition, 2000.

[94] B. Littlewood and L. Strigini. Redundancy and diversity in security. In 9th
European Symposium on Research in Computer Security, pages 423–438,
2004.

[95] H. Liu et al. A component-based programming model for autonomic
applications. In International Conference on Autonomic Computing
(ICAC’04), pages 10–17. IEEE Computer Society, 2004.

[96] N. Looker et al. Ws-fit: A tool for dependability analysis of web services.
In The 1st Workshop on Quality Assurance and Testing of Web-Based
Applications, 2004.

39



[97] N. Looker et al. Pedagogic data as a basis for web service fault models. In
IEEE International Workshop on Service-Oriented System Engineering,
2005.

[98] N. Looker and M. Munro. WS-FTM: A Fault Tolerance Mechanism for
Web Services. Technical Report 02/05, University of Durham, 2005.

[99] N. Looker and J. Xu. Assessing the dependability of ogsa middleware by
fault injection. In 22nd International Symposium on Reliable Distributed
Systems, pages 293–302, 2003.

[100] H. Madeira et al. On the emulation of software faults by software fault
injection. In IEEE/IFIP Int. Conf. on Dependable Systems and Networks
(DSN-2000), pages 417–426, 2000.

[101] E. Marsden. Caractérisation de la Sûreté de Fonctionnement de Systemes
à base d’intergiciel. Technical report, LAAS-CNRS, 2004.

[102] E. Marsden et al. Dependability of corba systems: Service characteriza-
tion by fault injection. In 21st IEEE Symposium on Reliable Distributed
Systems, pages 276–285, 2002.

[103] V. Maxville et al. Intelligent component selection. In 28th Annual Interna-
tional Computer Software and Applications Conference (COMPSAC’04),
2003.

[104] V. Maxville et al. Selecting components: A process for context-driven
evaluation. In Tenth Asia-Pacific Software Engineering Conference
(APSEC’03), 2003.

[105] J. McHugh. The 1998 Lincoln Laboratory IDS Evaluation, A Critique. In
RAID 2000, pages 145–161, 2000.

[106] D. A. Menascé. Qos issues in web services. IEEE Internet Computing,
6(6):72–75, 2002.

[107] M. Merideth et al. Thema: Byzantine-fault-tolerant middleware for web-
service application. In 24th IEEE Symposium on Reliable Distributed Sys-
tems, pages 131–140, 2005.

[108] Web services reliable messaging protocol (ws-reliablemessaging).
http://www-106.ibm.com/developerworks/webservices/library/

ws-rm/, 2004.

[109] Patrick Mueller and Greg Shipley. To catch a thief.
http://www.networkcomputing.com/1217/1217f1.html, 2001.

[110] R. Murty. Juliet: A distributed fault tolerant load balancer for .net web
services. In IEEE International Conference on Web Services, pages 778–
781, 2004.

[111] P. Narasimhan et al. MEAD: Support for Real-Time Fault-Tolerant
CORBA. Concurrency and Computation: Practice and Experience,
17(12):1527–1545, 2005.

40



[112] Web services security: Soap message security 1.0 (ws-
security 2004). http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-soap-message-security-1.0.pdf, 2004. OA-
SIS Standard 200401.

[113] D. Oppenheimer and D. A. Patterson. Architecture and dependability of
largescale internet services. IEEE Internet Computing, 6(5):41–49, 2002.

[114] J. Pan et al. Robustness Testing and Hardening of CORBA ORB Im-
plementations. In International Conference on Dependable Systems and
Networks, 2001.

[115] D. A. Patterson et al. Recovery-Oriented Computing (ROC): Motivation,
Definition, Techniques, and Case Studies. Technical Report UCB//CSD-
02-1175, UC Berkeley Computer Science, 2002.

[116] A. Delgado Peris et al. LCG-2 User Guide. Technical Report CERN-
LCG-GDEIS-454439, LHC Computing Grid, September 2004.

[117] M. Pighin and A. Marzona. An empirical analysis of fault persistence
through software releases. In ACM/IEEE Int. Symp. on Empirical Soft-
ware Engineering (ISESE 2003), pages 206–212. IEEE CS Press, 2003.

[118] N. J. Puketza et al. A methodology for testing intrusion detection systems.
IEEE Transactions on Software Engineering, 22(10):719–729, 1996.

[119] N. J. Puketza et al. A software platform for testing intrusion detection
systems. IEEE Software, 14(5):43–51, 1997.

[120] G. A. Reis et al. SWIFT: Software Implemented Fault Tolerance. In 3rd
International Symposium on Code Generation and Optimization, 2005.

[121] R. Rodrigues et al. Base: Using abstraction to improve fault tolerance.
In 18th ACM Symposium on Operating System Principles, pages 15–28,
2001.

[122] J.C. Ruiz et al. On benchmarking the dependability of automotive engine
control applications. In IEEE/IFIP Int. Conf. on Dependable Systems
and Networks (DSN-2004), pages 857–866, 2004.

[123] C. Sabnis et al. Proteus: A Flexible Infrastructure to Implement Adaptive
Fault Tolerance in AQuA. In 7th IFIP International Working Conference
on Dependable Computing for Critical Applications, pages 137–156, 1999.

[124] N. Salatge and J.-C. Fabre. A Fault Tolerance Support Infrastructure for
Web Services based Applications. Technical Report 06365, LAAS, May
2006. Research Report.

[125] G. T. Santos et al. FTWeb: A Fault Tolerant Infrastructure for Web Ser-
vices. In Ninth IEEE International EDOC Enterprise Computing Confer-
ence, 2005.

[126] D. P. Siewiorek et al. Development of a benchmark to measure system
robustness. In 23rd Int. Symp. on FaultTolerant Computing (FTCS23),
pages 88–97. IEEE CS Press, 1993.

41



[127] D. P. Siewiorek et al. Reflection on industry trends and experimental
research in dependability. IEEE Tansactions on Dependable and Secure
Computing, 1(2):109–127, 2004.

[128] L. Silva et al. Software aging and rejuvenation in a soap-based server. In
IEEE Network Computing and Applications, 2006.

[129] G. Slabodkin. Software glitches leave navy smart ship dead in the water.
http://www.gcn.com/print/17 17/33727-1.html, 1998. GCN Govern-
ment Computer News.

[130] V. Stankovic and P. Popov. Improving DBMS Performance through Di-
verse Redundancy. In 25th International Symposium on Reliable Dis-
tributed Systems, 2006.

[131] Web services reliable messaging tc ws-reliability.
http://www.oasisopen.org/committees/download.php/5155/

WS-Reliability-2004-01-26.pdf, 2003.

[132] Java Management Extensions (JMX). http://java.sun.com/j2se/

1.5.0/docs/guide/jmx/, 2004.

[133] M. M. Swift et al. Recovering Device Drivers. In 6th ACM/USENIX
Symposium on Operating Systems Design and Implementation, 2004.

[134] F. Taiani et al. A Multi-level Meta-object Protocol for Fault-Tolerance
in Complex Architectures. In International Conference on Dependable
Systems and Networks, 2005.

[135] F. Tartanoglu et al. Coordinated forward error recovery for composite
web services. In 22th Symposium on Reliable Distributed Systems, 2003.

[136] F. Tartanoglu et al. Dependability in the Web Services Architecture. In
Architecting Dependable Systems, volume 2677 of LNCS. Springer, 2003.

[137] S. Thatte. Xlang (web services for business process design).
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm,
2001.

[138] V. Tosic et al. Management applications of the web service offerings lan-
guage (wsol). Information Systems, 30(7):564–586, 2005.

[139] T. K. Tsai et al. An approach towards benchmarking of faulttolerant
commercial systems. In 26rd Int. Symp. on FaultTolerant Computing
(FTCS26), pages 314–323. IEEE CS Press, 1996.

[140] T. K. Tsai et al. Stress-based and path-based fault injection. IEEE
Transactions on Computers, 48(11):1183–1201, 1999.

[141] M. van der Meulen et al. Protective Wrapping of Off-the-Shelf Compo-
nents. In 4th International Conference on COTS-Based Software Systems,
pages 168–177, 2005.

[142] M. Vieira and H. Madeira. Benchmarking the dependability of different
OLTP systems. In IEEE/IFIP Int. Conf. on Dependable Systems and
Networks (DSN-2003), pages 305–310, 2003.

42



[143] S. White et al. An architectural approach to autonomic computing. In
International Conference on Autonomic Computing (ICAC’04), pages 2–
9. IEEE Computer Society, 2004.

[144] D. Wilson and H. Madeira. Progress on defining standardized classes for
comparing the dependability of computer systems. In Dependable Systems
and Networks (DSN2002) – Workshop on Dependability Benchmarking,
pages F1–F5, 2002. Supplemental volume.

[145] J. Xu et al. Networked Windows NT System Field Failure Data Analysis.
In 6th Pacific Rim International Symposium on Dependable Computing,
pages 178–185. IEEE Computer Society Press, 1999.

[146] S. Yoon et al. Ws-qdl containing static, dynamic, and statistical factors of
web services quality. In IEEE International Conference on Web Services,
pages 808–809, 2004.

[147] M. Yu-jie et al. Interactive web service choicemaking based on extended
qos model. In Fifth International Conference on Computer and Informa-
tion Technology, pages 1130–1134, 2005.

[148] P. Yuste et al. Nonintrusive softwareimplemented fault injection in embed-
ded systems. In 1st Latin American Symposium on Dependable Computing
(LADC2003), pages 23–38. Springer, 2003.

[149] J. Zhu et al. Robustness benchmarking for hardware maintenance events.
In IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN-
2003), pages 115–122, 2003.

43



 



 

 1 

 
 

Report of Res-Ex Workshop on Resilience-Explicit 
Computing for Critical National Infrastructures 

20-21 November 2008 
QinetiQ Malvern 

 
Nick Moffat (QinetiQ), Steve Riddle (Newcastle University) 

 
Contents 
 purpose 
 programme 
 outline of each talk 
 discussion 
 next steps 
 list of attendees 

 
1. Purpose 
This document summarises the second of the Resilience-Explicit "Challenge Problems" 
workshops, which took place on Thursday 20 and Friday 21 November, 2008 at QinetiQ, 
Malvern, UK. 

The workshop brought together people from the communities of Resilience and Security, 
with the goal of defining one or more "challenge" problems. A challenge problem is 
difficult issue that is relevant to some application area and that could be used as a 
benchmark for techniques related to resilience-explicit computing. 

2. Programme 
Thurs 20th November 

• 12:00 - 13:00 Arrival, buffet lunch 

• 13:00 - 13:15 Talk 1: Vision for the workshop - challenge problems and 

possible strategy (Steve Riddle, Newcastle + Colin O'Halloran, QinetiQ) 

• 13:15 - 13:30 Talk 2: ReSIST: Resilience-Explicit Computing (Tom Anderson, 

Newcastle) 

• 13:30 - 14:00 Talk 3: ReSIST: Res-Ex Challenge Problems (Steve Riddle, 

Newcastle) 

• 14:00 - 14:30 Talk 4: ReSIST: RKB Explorer (Hugh Glaser, Southampton) 

• 14:30 - 15:15 Talk 2: ESII/SERSCIS/CFMS/INDEED: Overview (Neil 

Briscombe, QinetiQ) 



 

 2 

• 15:15 - 15:45 Coffee break 

• 15:45 - 16:30 Talk 7: SERSCIS: CNI Sectors and Vectors (Alan Hood, QinetiQ) 

• 16:30 - 17:15 Talk 8: ESII/SERSCIS/CFMS: Semantic modeling tool based 

Resilience Mechanisms for CNI security (Neil Briscombe, QinetiQ) 

Fri 21st November 

• 08:15 - 08:30 Coffee 

• 08:30 - 09:15 Talk 7: SERSCIS: System Exploitation 101 (Alan Hood, QinetiQ) 

• 09:15 - 10:00 Talk 8: SEMIOTIKS: Actionable Intelligence Extracted from 

Natural Language Sources (Chris Booth and Neil Briscombe, QinetiQ) 

• 10:00 - 10:30 Coffee break 

• 10:30 - 11:30 Talk 9: ReSIST: Integrating Disparate Knowledge Bases using 

Semantic Web Technologies (Hugh Glaser, Southampton) 

• 11:30 - 12:00 Discussion and Next steps 

 
3. Outline of Talks 
Talk 1: Vision for the workshop 
Speakers: Steve Riddle, Newcastle and Colin O'Halloran, QinetiQ 

This workshop aims to define one or more “challenge” problems in the area of resilience-
explicit computing (see next talk). A challenge problem is a difficult issue, relevant to 
some application area, that could be used as a benchmark for techniques related to 
resilience-explicit computing. 

It was proposed that we consider the following vision: that the knowledge base under 
development within ReSIST could be a useful generic resilience resource when used with 
domain-specific knowledge bases. 

Talk 2: ReSIST and Resilience-Explicit Computing 
Speaker: Tom Anderson, Newcastle 
This talk gave an overview of the ReSIST project's activities focused on resilience-
explicit computing (ReSIST work package 1). Resilience is a form of dependability, 
focused on “maintaining delivery of dependable systems over time”. WP1 aims to lay 
foundations for facilities to assist engineers in selecting and deploying resilience 
“mechanisms” at design time; dynamically; during system operation and evolution. 
The word “mechanism” is deliberately vague, intended to be very inclusive: basically any 
way of helping improve resilience. For example it could be a tool, a manual procedure, a 
technique, a methodology, etc. 

The Resilience-Explicit Computing (Res-Ex) activity is complemented in WP1 by 
 - development of a Resilience Thesaurus and Ontology (Res-On) 

 - development of a Resilience Knowledge Base (RKB) which uses the Res-On 



 

 3 

Talk 3: Res-Ex Challenge Problems 
Speaker: Steve Riddle, Newcastle 

This talk described the basic objective for the Res-Ex challenge workshops, including this 
one, as being to identify something like a 'grand challenge problem' suitable for 
benchmarking current technology, benchmarking the resilience-explicit approach. It was 
hoped candidate problems would be identified during the workshop, and that workshop 
participants might form an ongoing working group to settle on a candidate and use it for 
benchmarking. 

Desired characteristics of such challenge problems were that they would: be manageable,  
be practitioner-oriented, and exhibit some degree of resilience. To serve as a test-bed for 
the exploration, evaluation and adoption of Res-Ex approaches at design and/or run time, 
they would ideally have potential for metadata exploitation, provide guidance and support 
for design rationale, include runtime reasoning policies and reconfiguration services, and 
offer opportunities for verification. 

The following approach was proposed: 
1. Select a problem 

2. Draft the problem statement 
3. Record a summary of resilience/dependability approaches that have been applied 
4. Record approaches in the form of Res-Ex mechanism descriptors 

5. Establish a working group 
6. Deploy Res-Ex approach 

Talk 4: RKB Explorer 
Speaker: Hugh Glaser, Southampton 

This talk gave an overview of the ReSIST Resilience Knowledge Base (RKB) Explorer - 
contents, interface and underlying technology. Some highlights follow. 

The RKB Explorer (http://RKBExplorer.com/) uses semantic web technologies to 
provide flexible user interaction. For example, results of a search for entries related to a 
particular person can be queried further to reveal the relationships.  
Saarbrucken University have used classical machine learning to assess the relatedness of 
many published resilience-related papers – statistical measures of the 'distance between 
papers' (not based on citation). 

The RKB includes information about resilience-related courses developed and described 
by ReSIST partners. One feature is the ability to show locations of courses on a map. 

The RKB supports queries about resilience mechanisms that have been characterised (in 
terms of metadata) and recorded via the project's wiki interface. An example shown was 
to find mechanisms that are appropriate for Hardware and Aerospace. One can then 
inspect the metadata to learn more about the mechanisms, for example to compare the 
operational overheads associated with detection of faults. SPARQL queries can be 
submitted to the RKB, for example returning metadata associated with mechanisms in the 
ontology. 



 

 4 

Talk 5: Project Overviews 
Speaker: Neil Briscombe, QinetiQ 

This talk gave an overview of some QinetiQ research projects related to emergency 
planning and critical infrastructure protection. 

Before describing the projects, it was noted that the UK MOD Defence Technical 
Strategy states an ambition to use semantic web technology to better exploit the World-
Wide Web. 
Security & Trust Semantic Modelling: This recurring theme is developing a method for 
capturing security/trust requirements associated with a system. In general the full set of 
such requirements cannot be met, so the method aims to support an operator's search for 
an acceptable 'best case'. On a case by case basis, an operator asks about the cost of 
particular mechanisms failing; the cost is revealed in terms of implications for 
requirements not being met. The approach relies on ontologies to enable discovery of 
dependencies between mechanisms. There is associated tooling. 

ESII (Enabling Security Information Infrastructure):  
This project generated a set of security/trust models. It demonstrated a number of benefits 
of the approach: increased understanding of security and business motivation, an ability 
to address system safety while enabling their flexible management at run time, and 
automatic generation of analysis documentation. Furthermore, with extra tooling the 
same models can be used as a basis for decision support and provision of audit trails. 
SERSCIS (Semantic Enhanced and Resilient and Secure Critical InfraStructure): 
Web services are increasingly coming together to form critical infrastructures. SERSCIS 
is looking at the whole life cycle of such infrastructures, including syntactic, semantic 
and pragmatic aspects. The idea is to use Memex Links to capture all relevant design 
decisions (the ‘whats’) in addition to the security decisions captured in the tool of the 
project above. The whole service lifecycle is covered and, crucially, to also include the 
reasons for design decisions (the ‘whys’). The ‘whys’ are modelled along each 
dependency path so that if something goes wrong there is a better chance of explaining 
why the relevant design decisions were made. 

CFMS (Centre for Fluid Mechanics Simulation): This project is using the same tooling 
that underpins the previous two projects. The main difference is that it is applied to a 
specific use case and integrates with specific middleware and user application products. 
The use case covers the management of IPR issues in multi-organisation design and fluid 
flow analysis/simulation of aircraft, cars and boats using SOAs. The system allows 
execution of collaborative analysis and design service orchestrations with policy 
enforcement as well as situational awareness of security in workflows as they execute 
with decision support features to assist in circumstances such as new requirements or 
system faults. 
INDEED (INterdisciplinary DEsign and Evaluation of Dependability): The aim of 
this project is to develop knowledge, methods and tools that firstly contribute to the 
understanding of the dependability of socio-technical systems and secondly support 
developers of dependable systems. Some of the projects above are related to INDEED. 



 

 5 

On behalf of St. Andrews University the speaker presented developments from areas such 
as HAZOP analysis for communication links and modular dependability cases. 

Akogrimo:  This is a completed EU co-funded project that had a Disaster Handling and 
Crisis Management scenario. The scenario involved a dirty bomb terror attack in Bristol 
with ‘domino’ status. Grid Services for Knowledge Management, Decision Support, Risk 
Management, and a Common Operational Picture for disaster response were discussed. 
This included contribution from the Bristol City Council emergency management team. 

Talk 6: CNI Sectors and Vectors 
Speaker: Alan Hood (QinetiQ) 
This talk gave some opinions regarding a range of possible electronic attack vectors 
against critical national infrastructure. It provided a very high level view based on the 
speaker's knowledge of CNI, combined with long experience monitoring and analysing a 
wide variety of electronic threats and countermeasures. 
The CNI sectors addressed were chosen to match the classification by the Centre for 
Protection of National Infrastructure (CPNI – see www.cpni.gov.uk): Energy, Food, 
Water, Transport, Communications, Government, Health, Emergency Services, Financial. 

We mention some major points made during the talk, first for particular sectors and then 
generally. 
Energy: This consists primarily of the gas and electricity utilities. Gas is more dangerous 
due to risk of explosion, but the gas infrastructure is very much designed to mitigate this, 
ironically making it more vulnerable to denial of supply (as it fails safe to avoid the risk 
of explosions). Both utilities have vulnerabilities due to a reliance on SCADA 
(Supervisory Control and Data Acquisition), which can be securely deployed but is 
increasingly exposed in an ever more interconnected world. Monitoring of energy supply 
is typically ICT-based, but this is not always the case with delivery – opening the 
potential for an attacker to blind the monitoring through ICT mechanisms while 
performing a more traditional/manual attack on supply. 

Food: The most likely risk of attack against food supplies would seem to be manipulation 
of perception - e.g. declare that certain food could be contaminated with mercury. 

Water: Similar to energy with respect to monitoring. Again, the real threat is perception. 
There is a certain degree of reliance on ICT in water supply, similar to energy supply. 

Transport:  Air is well protected, though there seems to be potential for physical attack 
against controlling mechanisms, such as air traffic control, and the potential for attack on 
the ICT at individual airports potentially leading to the higher control systems. Sea traffic 
seems to be more locally focussed, with defences considered on a per port basis. One 
hopes that if individual port authorities are penetrated this would not cause widespread 
damage. Road traffic would, it seems, be less effectively attacked through ICT than sea 
and air – note that we are considering malicious intent here (however common or 
frustrating unintended jams may be). Regarding modelling, the large number of factors 
suggest it would be infeasible to consider them all in a single 'monolithic model'. Rail 
appears more vulnerable than roads and sea, as the 'bad guys' will know where a train is 



 

 6 

going to be (and roughly when) and the control and monitoring of rail networks is often 
ICT-based. 

Communications: Wired and mobile telephone networks are highly computerised and 
could be attacked using ICT. Mobile telephones rely on cell sites with microwave 
antennae - these can be "mimicked" by an attacker with a more powerful broadcast 
mechanism. Assuming total control over phones, it is not clear there would be a 'major 
detrimental impact' comparable to the potential impact in other sectors; on the other hand, 
it could have a large impact in terms of revealing information. 

Government: Government is very diverse, especially given the European context. 
Governments will be networked to greater or lesser degrees. The biggest impact of an 
attack may be loss of social security (e.g. unemployment) benefits. 
Emergency Services: These are relatively well served in terms of tactical operation - for 
example, their mobile comms are generally regarded as robust (e.g. TETRA).  
Health: Here the need for access to data outweighs data protection. As a result, there is a 
distinct potential for attack (not least due to the number of users on health-related 
networks), but the degree to which this could lead to major detrimental impact is 
uncertain. 
Financial: Financial systems are highly networked, but spread across numerous distinct 
commercial organisations. Financial institutions are already attacked routinely, but it is 
difficult to obtain details of such attacks for analysis, particularly in the current financial 
climate where institutions are keen to avoid any perception of error. 
General Vectors: A number of attack techniques are likely to be effective in all sectors: 
DOS, Local Access, Network Penetrations, WLAN Infrastructure access, Web client 
attacks, Web application attacks, E-mail, Portable data services. 

The conclusion of this high level assessment of the potential for ICT attacks on critical 
infrastructure sectors highlighted two points: 1) adverse impacts on perception can be the 
most serious effect of an attack, 2) modelling is likely to be difficult in some cases 
because of the large number of factors relevant to the effectiveness of typical national 
systems. 

Talk 7: Resilience Mechanisms for CNI security 
Speaker: Neil Briscombe, QinetiQ 

The focus of this talk was to describe the security modelling described in Talk 5. The 
presentation was intended to promote discussion with ReSIST researchers as to how the 
tooling could be best represented as resilience mechanisms in the RKB. 
There are two main reoccurring themes in the use of the tooling: knowledge management 
and automated security analysis. The following diagram is an example from the CFMS 
project: 



 

 7 

 
Traditional diagramming and design tools are overly complicated, provide too much 
unrelated functionality and cannot guarantee compliance of security diagrams to their 
methodology. 
In contrast, tooling implemented specifically for the purposes of security modelling with 
a particular methodology can be very much simpler, having fewer but more relevant and 
domain-specific functions that allow quick and simple construction and at the same time 
guarantee methodology compliance ‘by construction’. 
Features of particular note highlighted and discussed were: 

• Dynamically ‘Collapsible’ grouping, which reduces complexity for both diagrams 
and the automatic analysis features; 

• Automatic Compromise Path Analysis, which shows all of the exploit paths 
available to an attacker; 

• Automatic Service Path Analysis, which shows all of the routes available for 
legitimate service subscribes (or system users); 

• A hierarchical ‘systems of systems’ editor, which has specific views of model 
subsets to provide different perspectives on the same infrastructure, user groups or 
their connections (to model system ownership in interconnected CNI for 
example); 

• ‘Memex Links’, which provide a machine-interpretable modelling framework 
designed to capture design decisions and enable flexible integration with other 
tools. 

Some other related projects were presented that examined the benefit of tooling that has 
been implemented specifically for particular methodologies and models that are encoded 
with formalised semantics, as follows. 
Information Assurance Awareness (IAA): 
In this project an enhanced version of the above tool records sharing of data so that it can 
be determined what a recipient is already known to know and what risks may be inherent 
in sharing additional information. Additional risk may be from repeatedly telling the 
same type of information (e.g. repeated locations give a route that may be projected to a 
destination) or different parts of information that is more important when combined (e.g. 
location and orders can give away specific target). 

Data mining across compartments: 
Incorporated aspects of IAA but also allowed for the planning of sharing to say that 
certain tasks would occur between certain groups, with a list of what would be shared and 



 

 8 

what should be hidden. Aimed to support situations where it may be possible to share 
data-mined results but where the whole data set is impractical/impossible to retrieve and 
where the information requester does not want the information holder to know what is 
being queried. 

'Springboard' from ESII: 
Various visualizations produced by this tool were presented and compared to the RKB 
visualisation method. 
ReSIST researchers discussed how the Springboard visualisation approach compares with 
RKB tooling. A difference noted was that ‘Springboard’ can pull in information from any 
ontological model and find relationships apparent through the model whereas the RKB 
tooling has several visualisation enhancements that are specifically coded against the 
structure of Res-On. 

Audience comment: Could some of these mechanisms be captured in ReSIST terms and 
used interestingly in one of the 'challenges'? The speaker responded that, yes, it was his 
intention to characterise some of these mechanisms during the lifetime of ESII and 
SERSCIS, and he would like to be involved in exploring a challenge problem. 

Talk 8: System Exploitation 101 
Speaker: Alan Hood, QinetiQ 
This talk gave an overview of pen(etration) testing techniques used by 'white hats' (the 
good guys), with observations regarding further techniques available to 'black hats'. The 
speaker has several years' experience as a leading member of QinetiQ's Penetration 
Testing Team. Note that the (UK) Computer Misuse Act is not limited by national 
boundaries, so all techniques described are only ever to be performed with full awareness 
and written permission of the system owner.. The four main areas of Penetration Testing 
are: Local access, network-level (infrastructure), web application testing, wireless 
networks. 
Local access: The typical attack route is social engineering and then privilege 
exploitation. But local access can mean limited environments, so techniques to bypass 
such limitations are sometimes needed. Local access can obviously be achieved by 
obtaining password credentials. Password guessing is basic but effective – 3 strikes and 
out is the usual rule, so two guesses can often be made without the user finding out. 
Password locations are well known, and they are stored on Microsoft systems using weak 
hashing (on pre-Vista systems, there is a LANMAN hash present in the SAM file for 
each user which can be readily broken and show the related password). Another option is 
to gather passwords from a logged in PC using U3 techniques, which involve removable 
USB data keys with 2 partitions, one of which mimics a CD ROM so can have 'autoexec' 
code executed automatically. Based on this, a tool called USB Switchblade silently 
recovers information from Windows 2000 or higher computers. Switchblade can be used 
to get information off the system, specifically passwords or website credentials. 

Network Penetration: This can provide credentials, connectivity and admin privilege. It 
consists of reconnaissance of the given network, typically following domains on 
Microsoft-based networks, and can lead to remote exploitation of unpatched systems, and 



 

 9 

where privileged password credentials are obtained can spread through techniques such 
as psexec. 

Reconnaissance ("Recce") involves getting network access (local access to some 
connected machine), 'recce'ing the network to obtain connectivity data (e.g. using tools 
such as the Backtrack live Linux distribution), and reviewing the recce data to plan an 
attack (for example, through bruteforcing of services which allow credentials to be tried, 
or through exploitation of unpatched or poorly configured services). 
One technique which can be used on a given Microsoft-based platform is checking for 
cached credentials - if an administrator has used the system, for example, their password 
details can be gathered using the correct technique, and once obtained, these credentials 
can be used on other systems on the network where the account is trusted. 
The psexec utility can be used to execute processes on other systems without having to 
install client software. This requires administrative credentials, so is a perfect 
combination with the caching technique described above. 

Remote exploitation relies on finding vulnerabilities in remote systems, but unpatched 
networked services are increasingly rare. One can sometimes exploit using the public 
‘metaploit’ framework, but public exploits are now much rarer than historically. 
Web application testing: 

Forceful browsing is the accessing files that are publicly visible, but should not be. It can 
be useful to infer likely website structure. An example is Intentia vs. Reuters, where a 
reporter guessed the URL of a company's third quarter results from previous URLs. 
Manipulation of HTTP is a real danger as an attacker can manipulate anything in the 
HTTP – it is completely under local control. 
Hidden fields are often used in forms to send extra data along with user input; this data is 
not displayed by browsers but can be found by inspection of the webpage source and 
arbitrarily modified. To guard against malicious exploitation of fields, websites should 
always use end server validation. Exploitation of hidden fields can involve manipulation 
of data sent to the server (e.g. SQL injection exploits weak parsing of user-supplied data 
with the purpose of adding commands which will be executed at the server) or cross-site 
scripting (when a web application allows users to modify the content of the site, and 
where another user observing that content can trigger an undesired effect). An amusing 
example was given where a QinetiQ pen tester exploited weak server parsing to make a 
customer's gambling site accept negative bets.... this resulted in him winning large 
amounts of money when he ‘lost’ bets. (Being a white hat, he returned all this money to 
the customer!) 
Wireless networks: 

WiFi networks are increasingly present, but not always well protected - the Mumbai 
attackers used unprotected WiFi networks to send emails from innocent third parties who 
had failed to secure their home systems. 
Wardriving is the process of locating WiFi networks, which report their security 
mechanisms - these are usually WPA/WPA2 (which is generally good, but needs 
appropriately-long passwords), WEP (which is trivially broken), or unprotected (which 



 

 10 

can be directly connected to by a third party). The data received in Wardriving is being 
publicly broadcast, so the process is generally regarded as legal provided no inappropriate 
access is made to the network. This raises the difficulty of auto-connection - if a laptop 
automatically connects to any "open" WiFi network nearby, and a user has set their 
network up without any protection (due to lack of understanding), it would be difficult to 
prove intent to penetrate the network. Typical tools for wardriving and the subsequent 
penetration of located networks include the Kismet, Netstumbler, and Aircrack-ng tools. 
Another technique is the impersonation of a WiFi access point – where a user who has a 
system set to access, say, HOME_NETWORK goes out of range of that network, their 
system continues to request it; an astute attacker can simulate that network, and the user 
could auto-connect to the malevolent network (and could be attacked using whatever 
techniques the attacker wishes). 

Talk 9: Actionable Intelligence Extracted from Natural Language 
Sources 
Speaker: Chris Booth, QinetiQ 

Improvised explosive devices (IEDs) are used by people in a highly unstructured way: 
new targets are chosen because they are not as well defended as previous targets; attack 
methods are constantly changing. Explosive ordnance disposal (EOD) is therefore a 
constantly moving target, but there is much of value that can be captured from the reports 
written by EOD operators. The best place to document the constantly changing conditions 
is in the last field of the EOD report, which allows a freeform narrative of the incident to 
be captured. The intelligence to be obtained from these freeform fields would be an 
extremely valuable resource, if it could be extracted at a reasonable price. Furthermore, 
open source texts may also be a valuable resource for intelligence analysts, but currently 
only people can reliably use open sources for intelligence. 

The Triton reports, produced by Hazard Management Solutions Ltd in Shrivenham, show 
just how much value there is in open source material. They summarize terrorist incidents 
as reported in open media. The armed forces and the Intelligence community both use 
these reports. But a considerable amount of human skill and experience is required to 
interpret the source material. 
There are some tools that allow information discovery in natural language texts, but they 
are relatively crude and don't have the sort of understanding that a person does. This work 
aims to leverage the ontologies and natural language processing algorithms in order to 
automate the extraction of structured information from natural language texts. 
The Semantic Web underpins new tools for rapidly mining semantic gems. Tools based 
on parsing natural language to see its structure, coupled with algorithms for recognizing 
instances of ontology concepts, can mine semantic information at an affordable price. 
Semantic information provides analysts with a sound basis for delivering actionable 
intelligence to their commanders. 
We use existing information extraction techniques, such as named entity recognition, and 
synonym recognition, to identify some useful information from texts. In addition, we 
have developed tools that combine the power of a natural language parsing algorithm 



 

 11 

with a specially developed ontology – in this case an IED ontology – to extract structured 
data from texts. 

The structured data that we extract is represented as RDF triples, where each triple is 
compatible with the IED ontology mentioned above, and can be understood as a simple 
subject-predicate-object statement, which can visualized as a pair of labelled nodes linked 
together by a labelled arc. If two nodes share the same label, the triples that contain them 
can be merged to form a graph.  
The extraction proceeds by parsing each sentence to identify its linguistic structure. Some 
sentences match patterns that we have previously identified. If the words or phrases in 
those sentences correspond to concepts and relations from the ontology, then we extract a 
triple that approximates the meaning of the sentence. Each document thus gives rise to a 
collection of triples, or a graph. 

This graph can be shown to a user in our Manual Annotation tool, where it can be 
checked and edited so that the information in the graph is accurate. Then that information 
is stored in a central Knowledge Repository. If any of the nodes from the document share 
a label with nodes already in the Knowledge Repository, they are also merged. We can 
thus begin to aggregate information from multiple sources about a single entity, which is 
a form of information fusion. 

We have shown how traditional information extraction, combined with natural language 
processing and ontologies can be used together to extract semantic information from 
natural language texts, i.e. to deliver actionable intelligence from natural language 
sources. 

Related capabilities – designed to combine with the above capability – were developed by 
Paul Smart’s team in Southampton University as part of the SEMIOTIKS project. Of 
particular note was NITELIGHT, which generates SPARQL queries graphically in a fully 
reflective tool, as illustrated in the following diagram. 

  



 

 12 

There followed some discussion about how one could apply lessons from SEMIOTIKS to 
the RKB. 
Tom Anderson asked whether it was possible to set out an agenda for investigating 
application of semiotics. 
Neil Briscombe observed that benefits of using semiotics could include tracking of 
emerging threats, security accreditation, extraction of pragmatics from text and 
automatic generation of summaries. 
Nick Moffat asked whether one could track emerging threats, look at documents and 
make inferences (using models), and generate a useful representation for analysis. If so, 
would this be at design time or runtime? 
Neil replied that it is difficult to fuse documents, so these tools are better for arming the 
human analyst. 
Neil also commented that NITELITE’s ability to produce SPARQL queries graphically 
may broaden the appeal of the RKB. 

Talk 10: Integrating Disparate Knowledge Bases using Semantic 
Web Technologies 
Speaker: Hugh Glaser, Southampton 

This talk explained in more detail the architecture of the RKB and associated software. 
The different sorts of Knowledge Bases were described, and then the more than 30 
different ones were named explicitly. Issues of Semantic Web/Linked Data were 
presented, and then many components described. 

It is highly desirable to avoid incorrect conflation of resources – identifying multiple 
URIs for one resource. This is the major problem of co-reference, which was discussed in 
some detail. The solution used in the RKB was explained. 
In the conclusion it was stated that major data fusion is possible using Semantic Web 
technologies and that many types of system can be cast in a Semantic Web framework. In 
particular, linked data and RDF are effective techniques, and “a little ontology goes a 
long way”. Co-referencing is the biggest problem that arises so an effective co-reference 
architecture is crucial. 

Audience comment: Might a mapping between ontologies be definable between, say, a 
resilience ontology and a sector-specific CNI ontology that could be exploited by tools? 
The suggestion was that CNI tools might make use of the CNI ontology, which might 
reference the resilience ontology. The speaker responded that he would see the mapping 
as a component to access different knowledge databases, enabling distributed queries 
across different databases. He emphasised that one would need a way to translate 
between the two (perhaps using RDF). 

Discussion 
Joe Bradbury (from the CPNI) had to leave early, but he first remarked that he would be 
keen to be engaged in follow-up discussions/workshops. 



 

 13 

Those present were asked to describe what reservations they may have about the Res-Ex 
approach. In particular, why not instead go to Wikipedia for mechanism descriptions? It 
was suggested that a major benefit of the Res-Ex approach is that a wide variety of 
mechanisms can be described in a uniform manner, and that in contrast Wikipedia 
descriptions are not (formally) structured. This gives an opportunity to develop tools to 
exploit the information in a uniform manner. It was further noted that one could use 
Google to find mechanism descriptions, but that again these would not be structured. 
The consensus was that the Res-Ex approach seems a good idea. But the question 
becomes how to get people to accept/use it. This is a difficult problem, which may 
become easier when the RKB is fully fledged. 

It was remarked that we can refer to the Res-Ex approach in proposals, but there was a 
cautionary note that the approach must be accessible to the practising engineer. 

On the subject of how to obtain a challenge problem, it was suggested that projects such 
as those described by QinetiQ might be good places to look. Neil Briscombe repeated that 
he would like to describe some of his tools as resilience mechanisms within the lifetime 
of existing projects. This was welcomed, but with the reminder that the RKB is in the 
public domain. 
The question of how to engage interest from a wider community arose. One response was 
that existing stakeholders could be approached, such as customers for existing or recent 
projects (e.g. Bristol City Council). Also, Joe Bradbury may know of stakeholders in the 
finance sector. Transport contacts could be found through the Highways Agency. 
It was agreed that a sensible way forward would be to build up contacts by e-mail until a 
sufficiently large and interested group has been achieved, including practitioners. For 
example, it was noted that Lorenzo Strigini of City University had been keen to attend the 
workshop but was unable to do so. Lorenzo has valuable expertise in human factors 
issues and it was agreed to invite him to be involved in the e-mail forum. Other obvious 
potential contacts were identified at York, Edinburgh and Bristol. There was also a strong 
interest in expanding representation to include contacts from mainland Europe. Once the 
forum is established, it was agreed it would be worthwhile organising a follow-up 
workshop to expose to practitioners a summary of the techniques described above. 

There was some discussion regarding a suitable co-ordinator, with full agreement that 
Neil Briscombe would be welcomed as the initial co-ordinator (assisted by Nick Moffat). 
Neil’s co-ordination role may be a temporary until a challenge problem is chosen, after 
which the problem owner may be asked to co-ordinate. 

To illustrate the potential a poster (produced by Bristol City Council) of the issues 
relating to Bristol (a core city with domino status) was presented and discussed at length. 
Debate included scenario issues that indicated how the themes of the workshop would be 
recognised by CNI protection practitioners. Also examined was a technical focus in the 
poster of exploring the geospatial issues of risk-focused crisis management and how 
using the RKB might be beneficial. 

Tom Anderson summarised the two days from Newcastle’s perspective: The workshop 
had not completed the specific objective of identifying a challenge problem but the talks 



 

 14 

had stimulated plenty of discussion. There were clearly some promising opportunities for 
collaboration and for extending the group to include more practitioners. 

Hugh Glaser gave Southampton’s perspective: Critical Infrastructure Protection is a good 
domain within which to investigate ontologies. Hugh was uneasy about the absence of 
example CNI features/problems. For example, it would be helpful to know specific 
information about the infrastructures QinetiQ is looking at. He said he would be 
interested in further collaboration on topics discussed. 

Next Steps 
Closer links between those present at the workshop could of course be forged through 
collaboration on future research projects. For example, Hugh Glaser was invited to 
propose extensions to existing projects in which Southampton is involved with Neil 
Briscombe’s QinetiQ team. Such collaboration could focus on themes explored during 
this workshop. 

A forum is planned that will 
 be lightweight to encourage wide interest 
 use a mailing list to give exposure to problems of interest and methods/tools 
 involve two communities: ‘critical infrastructures’ and ‘emergency planning’ 
 act as an informal introduction service to help focus research on realistic problems 
 be chaired by Neil Briscombe initially 

 
A major objective of the forum will be to identify a specific challenge problem definition, 
then define it and invite the community to propose Res-Ex solutions, perhaps through a 
further workshop meeting. The likely topic is “Emergency Planning”. 

Neil Briscombe is keen to make use of Res-On within the SERSCIS project and to 
characterise as resilience mechanisms within the RKB a variety of methods and tools 
developed within his projects. In addition, he intends to exploit the RKB in some of these 
projects to support reasoning about resilience. This will use internal QinetiQ tasking. 

 
List of Attendees 
* denotes a member of ReSIST. 
 
Austin Anderson – Southampton University 
Tom Anderson*  – Newcastle 
Stuart Bertram  – QinetiQ 
Chris Booth  – QinetiQ 
Joe Bradbury – Centre for the Protection of National Infrastructure, CPNI 
Neil Briscombe – QinetiQ 
Hugh William Glaser* – Southampton University 
Alan Hood – QinetiQ 
Russell Lock – St Andrew’s University 
Ian Millard* – Southampton University 
Nick Moffat* – QinetiQ 
Colin O’Halloran* – QinetiQ 



 

 15 

Stephen Riddle* – Newcastle 
Tim Sheppard – QinetiQ 
William Simmonds* – QinetiQ 
 
Apologies were sent by Andrew Hartley of Bristol City Council and Lorenzo Strigini of 
City University.



 



 

 1 

 
ReSIST workshop report 

 
Challenge Problems for Resilience-Explicit Computing 

 with Assistive Technologies 
 

Culture Lab, Newcastle University 
5 December 2008 

1. Introduction 

The ReSIST workshop on Challenge Problems for Resilience-Explicit Computing with 
Assistive Technologies1 aimed to bring together researchers and practitioners from the 
different communities of Resilience and Assistive Technologies. The goal, as with all 
three workshops, was to define one or more Resilience-Explicit Computing “Challenge” 
problems. Such a problem would highlight a relevant issue to be used as a benchmark for 
resilience-explicit computing techniques, and would have the potential to lead to the 
development of technologies and tools to support developers of Assistive Technologies.  

The ReSIST workpackage on Resilience Explicit Computing aims to improve the extent 
to which system resilience can be predictably maintained, by stating the resilience-related 
properties of components in the form of metadata published either by the components 
themselves or by observers. This metadata may be used at design-time to guide the choice 
of design patterns and development tools, or at run-time to support reconfiguration. 
Examples of metadata include descriptions of known failure modes declared in a 
component’s functional specification, a person’s workload in a socio-technical system, 
and historical availability statistics. The phrase “resilience mechanism” is used to refer to 
any design pattern, technique or tool intended to improve system resilience. Examples 
include fault-tolerant architectural patterns (e.g., n-version programming) and 
development tools (e.g., robustness testing tools).  

Challenge problems are a mechanism for demonstrating progress and galvanising the 
research community. A well-known example is the Grand Challenges in Computing 
Exercise, which has identified a number of long-term research initiatives on an ambitious 
scale. The Resilience-Explicit Challenge Problems are envisaged on a smaller scale, but 
are intended to help us to acquire and expand knowledge of the state of the art by 
encouraging multiple approaches to a common problem, and facilitating comparison 
between existing technologies. 

The field of Assistive Technology covers a wide range of technologies designed to 
support “independent living”: that is, the ability to take part in normal, day-to-day 
activities in spite of infirmity brought on by age, disease or disability. Examples include 
support for medication, diet and nutrition; personal mobility; and virtual communities. 

                                                
1 The workshop was run in collaboration with the EPSRC Inclusive Digital Economy Network and the EU 
FP7 OASIS project http://www.oasis-project.eu/ 



 

 2 

Each of these examples has significant potential risks to individual safety and security: 
these include danger of overdose, falls or other accidents, and phishing attacks.  

The aim of the workshop was to facilitate discussion of these technologies and the 
potential threats to resilience, and the scope for applying the Resilience-Explicit approach, 
with the goal of defining one or more challenge problems and forming a working group 
to work on the further definition and application of these problems. 

The workshop attendees were: Tom Anderson, Brian Randell, John Fitzgerald, Steve 
Riddle, David Greathead, Patrick Olivier, Stephen Lindsay, James Thomas, John Shearer, 
Jon Hook, Phil Heslop (Newcastle University); Giovanna Di Marzo Serugendo (Birkbeck, 
University of London); Stuart Colmer (Centre of Excellence for Life Sciences); Alan 
Newall (University of Dundee); Ian Millard (University of Southampton) 

The workshop was structured with introductory presentations followed by a specially 
filmed video, featuring actors in a scenario highlighting many of the problems in 
Assistive Technology. The workshop concluded with breakout groups discussing one of 
four case studies, as potential sources of material for a Challenge Problem. Each of these 
elements of the workshop will be summarised below. 

2. Presentations 

The first presentation from Steve Riddle, Newcastle University, set the scene for the 
workshop and attempted to summarise key concepts of dependability and resilience for 
the benefit of the attendees who were not familiar with the terminology.  

This was followed by guest speaker Stuart Colmer, from the Centre of Excellence for 
Life Sciences (North East). Speaking on the commercial context for Assistive 
Technologies, Stuart highlighted the problem of a lack of professional careworkers 
coming into the industry, and the resulting need for technological support to promote 
independent living. Opportunities for Assistive Technology in daily life included 
medication compliance, home safety and security, nutrition and cognitive support, 
support for mobility and virtual communities. He made the point that we do not strive for 
perfection in these technologies, and should not underestimate the abilities of those that 
are in need of assistance. It is more important to provide a useful function, ideally making 
use of standard equipment, if the technology is to have a chance of being used. It is 
crucial to be aware of user interface design and to think about unintended consequences 
of use of the technology. Ideally, such technology should have a natural, familiar 
interface where factors of security and Quality of Service are a given. 

Research Associate Stephen Lindsay from Newcastle University then presented a 
research agenda for Assistive Technologies. His main focus is assistance with Dementia, 
one of the fastest growing issues in public health today. It is estimated that one in three 
people in Britain over the age of sixty-five will die with dementia, with a cost estimated 
at £4.6 billion per annum. Challenges faced by patients with dementia include behaviour 
(aggressiveness, depression), wandering, memory loss and a decrease in self-control. The 



 

 3 

major resulting issues are loss of personhood and loss of independence. Current research 
projects to relieve these problems include use of GPS location systems for ‘elopement 
detection’ and recovery, and RFID-tagged Smart Environments; and Activity recognition 
techniques to help with food preparation, medication reminders and shopping lists. 
Ethical issues have been identified, including acquisition of personal medical data which 
could be used against the owner, and the ability of the owner to consent to its use. 
Dependability issues include the transmission of personal data over insecure wireless 
networks and the reliability of GPS location systems, but also less obvious factors such as 
the potential trauma caused by poorly functioning devices and by the need for 
maintenance of a device. Consistency of interface design is a further common factor. 

3. Video: “Relative confusion” 

The video was prepared for the workshop by Alan Newell of the University of Dundee. 
The video featured three actors involved in a scenario based around the installation of a 
new digital television, but also included episodes based around the use of ‘everyday’ 
technology such as telephones, answering machines and GPS devices. One actor 
remained ‘in character’ for a very instructive discussion after the video. It was clear that 
much more could be done to keep interfaces simple and familiar, and that successful 
assistive technology needed to be accessible first and foremost, then have a useful 
function, and then provide a dependable service.  

4. Breakout groups 

The participants divided into groups. Each group discussed a scenario provided by the 
OASIS project: the scenarios all related to a proposed device or technology to assist 
vulnerable people. These included a route guidance system, nutritional adviser and a 
driving health assistant. In discussing the scenarios, participants focussed on the 
following questions relating to resilience and trust: 

1. What does “Resilience” mean in this scenario? 
2. What faults or problems do these kinds of system need to be resilient to – what 

could go wrong, and what might be the causes? 
3. What features might we require from the ‘silicon component’, such as high 

reliability, or availability? 
4. What would be the ideal, reliable, trustworthy solution? 

Discussions are summarised below. 

Scenario 1: Route guidance and transport information system. This scenario involves 
assistance to a pedestrian or driver, in a similar manner to a GPS navigation system. 
Additional features would be choice of safe or scenic routes to a destination, re-planning 
if the user takes a different route, and information about points of interest or current 
events. Some of this information might be provided by approved service providers. The 
transport information part of the system would provide alternative routes from a given 



 

 4 

origin to a destination, making use of a given set of possible forms of transport (car, foot, 
bus, train, etc).  

Discussion identified failures in positioning, communications and currency of map 
information as the most likely problems, with incorrect information being the common 
effect. There was some concern about the possibility of malicious attack to block signals, 
or send the user through an unsafe area. Some of these problems could be clearly 
mitigated, for example through the use of the most recent data if up-to-date data became 
unavailable. The use of user profiles to record favourite routes, typical walking speed and 
preferred forms of transport brings further concerns about privacy. It was proposed that 
an ideal solution would be “as good as someone leading the user by the hand”, and the 
required level of trust in the information provided could be achieved by a large user 
community providing routing information and giving a level of trust, either implicitly or 
explicitly. 

Scenario 2: Driver health assistant.  This scenario proposes a device worn by a driver 
which would monitor their health status, measuring for example blood sugar levels and 
pulse, and take appropriate action when a dangerous situation was observed. Such action 
might include an audible alarm to the driver or calling for medical assistance. Medical 
records might be available in the car or be referred to based on a lookup from a unique 
code in the device. 

A number of problems were identified, such as communication failures (as in the 
previous scenario), the reliability of the device and the danger of false positives with 
consequential emergency callout, the need for the device to be worn by the user (who 
may forget), and the danger to the device itself through mishandling. The accuracy of the 
decision parameters and policies for medical diagnosis are a further issue, which would 
result in a high level of criticality for the device. As before, the key issue which would 
affect whether the system would be used is the level of trust the user would have in the 
system. 

Scenario 3: Vehicle accident detection. This scenario concerned a proposed system 
which would determine when a vehicle had experienced an accident or collision, when 
the driver was not able to make an emergency call themselves. The scenario has some 
similarities with the previous one, and would have similar potential failures such as 
communication failures and false positives. A further feature (also relevant to the 
previous scenario) is the need for feedback to the user to reassure them that emergency 
callout has been effected. 

Since the vehicle itself could have had a major collision, the callout equipment would 
need to exhibit robust fault tolerant behaviour such as redundant sensors, an externally 
monitored heartbeat, and a rugged design. Other common issues identified include GPS 
failures, malicious interference, inadequate maintenance and false manual activation or 
cancellation. 



 

 5 

5. Summary and Follow-on work 

A wrap-up provided by Tom Anderson (Newcastle) drew out the following common 
threads: 

1. Assistive Technology, in order to be practical and widely used, must be accessible 
and functional, must bring the user some benefit, and must be adequately 
dependable. While we as proponents of dependability might demand that 
dependability is the priority feature, it must be accepted that technology will not 
be used unless there is some benefit – and users will put up with some minor 
faults if the benefit outweighs the inconvenience. 

2. The stress has to be on the interface to the user: this must be simple, consistent, 
familiar, providing clear guidance which is comprehensible to the novice user. 
Returning to the tenet proposed by Stuart Colmer, Assistive Technology should 
provide natural interfaces where security and Quality of Service are given. 

It was clear that there was genuine interest in conducting follow-up work to define a 
challenge problem drawing on the scenarios discussed during the workshop. To this end a 
local interest group was identified which would be tasked with coordinating followup 
activities. Co-ordinated by local representatives of the Resilience and Assistive 
Technology Communities, the initial activities of this group will be to recruit participants 
from both communities and begin the selection and definition of a challenge problem 
drawing on the scenarios discussed previously. Participants will be invited to develop 
solutions to these problems, with an emphasis on the selection and use of appropriate 
resilience mechanisms.  

  
 


	resexgrid-pisa080714 1.pdf
	Grids and Resilience
	Resilience-Explicit Computing
	A Scenario

	The Res-Ex Approach
	Related Work on Application Areas
	Grid computing
	Dynamic reconfiguration
	Component-Based Software: selecting components

	Service Oriented Architectures
	Introduction
	Recent research work in ReSIST
	A Fault Tolerance Support Infrastructure
	Support for Human-Intensive Real-Estate Processes
	Service-oriented Assurance
	Modelling of Reliable Messaging in SOAs

	Other Research on SOA
	Resilient executive support for Web Services
	Resilience assessments and tools
	Security and authentication issues
	Reliability of SOA protocols
	Transaction, composition and orchestration
	Quality of service requirements


	Resilient Architectures with Off-the-shelf Components
	Introduction
	Lines of research on resilience with OTS components
	Identifying vulnerabilities of OTS software
	Recent work on diversity in replication-based FT systems
	Diversity for security
	Adaptive Fault Tolerance
	Infrastructure management

	Recent Research Work in ReSIST
	An Immune System Paradigm
	An Engineering Approach to Component Adaptation
	Fault tolerance via diversity for off-the-shelf products


	Dependability Benchmarking
	Introduction
	Dependability benchmarking approaches
	Accidental faults
	Intrusions
	The Lincoln Lab experiments
	University and research testing environments
	Commercial testing environments




