
Resilience evaluation
with regard to accidental

and malicious threats

Mohamed Kaâniche

Summer School

Resilience in Computing Systems and Information Infrastructures
- From Concepts to Practice -

24-28 September 2007, Porquerolles, France

mohamed.kaaniche@laas.fr

Scope

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Security

Dependability
and

Security

accidental
+

malicious

Fault Forecasting !
resilience
evaluation

213

Outline

! Introduction:

" ordinal and quantitative evaluation

! Definitions of quantitative measures

! Probabilistic evaluation methods

" Combinatorial models: Reliability diagrams, Fault trees

" State-based models: Markov chains

! Experimental measurements

! Evaluation with regard to malicious threats

! Conclusion

Resilience evaluation

! Estimate the present number, the future incidence and
the likely consequences of faults

! Assess the level of confidence to be placed in the target
systems with regards to their ability to meet specified
objectives

! Support engineering and design decisions

" comparative evaluation of candidate architectures

" prediction of the level of resilience to be achieved in
operation

" reliability, resource and cost allocation based on
quantified predictions

214

Two types of evaluation

Qualitative
or “ordinal”

Quantitative
or “probabilistic”

identify, classify, and rank the
failure modes or the event
combinations (component
failures or environmental

conditions) that would lead to
system failures

evaluate in terms of
probabilities the extent
to which some of the

attributes are satisfied

attributes ! measures

Evaluation methods

Modelling
(analytical models,

simulation)

Measurements
(controlled experiments,

data from operation)

parameter estimation
model validation

Ordinal evaluation Probabilistic evaluation

FMECA

Reliability block diagrams

Faut Trees

State-based models

Markov chains

Petri nets

relevant parameters
to measure

215

Place in the life cycle process

resilience
evaluation

Development

Operation

Requirements

Design

Implementation
& Integration

Specification of resilience objectives,
preliminary analysis of threats and
failure modes

Comparative assessment
of architectural solutions

Measurements based on
controlled experiments
and testing

Follow-up of the system
resilience based on
operational data

Avionics: ARP 4754 Standard

Aircraft level
Functional Hazard
Assessment (FHA)

System Safety
Assessment

(SSA)

Aircraft Level
Requirements

Allocation of
Aircraft Functions

to Systems

Development of
System Architecture

Allocation of
Requirements

to HW&SW

System
Implementation

Prelim. System
Safety Assessment

(PSSA)

Common
Cause

Analyses

(CCAs)

Physical System

Implementation

Item Reqts
Item Reqts,Safety objectives,
Analyses Required

Failure modes, Effects, Classification,
Safety Reqts

Separation Reqts

Separation
& Verification

Failure modes &
Effects

Functional
Interactions

Architectural Reqts

System Architecture

Aircraft
Functions

System Functions

System Development ProcessSafety Assessment Process

System level
FHA

Certification

Failure condition, Effects,
Classification, Safety objectives

216

FMECA
 Failure Modes, Effects, and Criticality Analysis

! Initially used for Hardware, then extended to software
(SEEA: Software Error Effect Analysis)

! What can FMECA be used for?

" Identify for each component, or function, .. potential
failure modes and their consequences on the system

failure mode = the way a failure manifests itself

" Assess the criticality of each failure mode

failures prioritized according to how serious their
consequences are and how frequently they occur

" Identify possible means to prevent or reduce the effects of
each failure mode

" Define validation tests to analyze such failure modes

Generic failure modes (IEC 812-1985)

1. Structural failure (rupture)

2. Physical binding or jamming

3. Vibration

4. Fails to remain in position

5. Fails to open

6. Fails to open

7. Fails open

8. Fails closed

9. Internal leakage

10. External leakage

11. Fails out of tolerance (high)

12. Fails out of tolerance (low)

13. Inadvertent operation

14. Intermittent operation

15. Erratic operation

16. Erroneous indication

17. Restricted flow

18. False actuation

19. Fails to stop

20. Fails to start

21. Fails to switch

22. Premature operation

23. Delayed operation

24. Erroneous input (increased)

25. Erroneous input (decreased)

26. Erroneous output (increased)

27. Erroneous output (decreased)

28. Loss of input

29. Loss of output

30. Shorted (electrical)

31. Open (electrical)

32. Leakage (electrical)

33. Other unique failure conditions as
applicable to the system
characteristics, requirements and
operational constraints

217

Criticality {severity, frequency}

Untolerable risk. Risk reduction measures are required

Undesirable risk, tolerable only if risk reduction is impractical
or if costs are disproportionate to the improvment gained

Negligible risk

Class I

Class II

Class III

Class IV

Frequency Severity

Catastrophic Critical Marginal Negligeable

Probable

Occasional

Remote

Improbable

Incredible

Frequent Class I

Class IV

Class II

Class III

Example: IEC- 61508-5 standard

Tolerable risk if the cost of risk reduction would exceed the
improvment gained

FMECA steps

! Breakdown the system into components

! Identify the functional structure and how the
components contribute to functions

! Define failure modes of each component, their causes,
effects and severities

" Local effect: on the system element under study

" Global effect: on the highest considered system level

! Enumerate possible means to detect and isolate the
failures

! Identify mitigation actions to prevent of reduce the
effects of failure at the design level or in operation

218

FMECA Worksheet

Ref.
n° function

failure
mode

failure
cause

local

Description of unit

operational
mode

Description of failure Failure effect

global

Probability
of occurrence

 Criticality
level

 Commentsdetection
means

corrective
actions

Detection & mitigation

FMECA pros and cons

! Pros

" applicable at the early design stage

" detailed information about failure modes end their effects,
during the various stages of the system development

" contribution to the prevention of design faults and to the
definition of fault tolerance requirements and needs

" useful inputs for validation testing

" results can be used to aid in failure analysis and
maintenance during operation

! Cons

" not suitable for multiple failures

" may be tedious for complex systems .. but .. necessary

219

Probabilistic evaluation

Quantitative Measures

Reliability, Availability, Safety, …

Stochastic Model(s)

System behavior wrt to fault occurrence or
activation, fault tolerance and service

restoration strategies, ..

Data

characterizing elementary processes
(components failure rates, error detection rates,

recovery & repair rates, …)

• Model construction
• Model solution
• Model validation

Controlled
experiments

Field data
(operation, feedback
from similar systems)

Expert judgments

Dependability measures

Service implements
system function:

correct service

X = 1

Service does not implement
system function:

incorrect service

X = 0

failure

restoration

Quantitative measures

Measure of
CONTINUOUS
delivery of a

correct service
(time to failure)

MAINTAINABILITY RELIABILITY

Measure of delivery
correct service

relative to
ALTERNATION

correct/incorrect

Measure of
CONTINUOUS
delivery of an

incorrect service
(time to restoration)

AVAILABILITY

220

Dependability measures

Reliability: Rk(u)=Prob. {!k > u} = Prob.{X(")=1 # " $ [tk-1, tk-1+u]}

Availability: A(t) = Prob. {X(t) = 1} = E {X(t)}

Maintainability: Mk(u) = Prob. {%k ! u}

X

1

0

timet1t0=0 t2 tk-1 tk

!1 %1 !2 %2 !k %k

tk-1 t tk-1+!k

u

Multi-performing systems

! More than two service delivery modes

" Correct service " progressive performance degradation

" Incorrect service " failure consequences

! X = {x1, x2, …xn}

" xk: service delivery modes (accomplishment levels)

" two extreme cases

1 correct service mode — several incorrect service modes

Several correct service modes — 1 incorrect service mode

" xk are usually ordered, order induced by

performance levels: perf(x1) > perf(x2) > … > perf(xn)

criticality levels: crit(x1) > crit(x2) > … > cri(xn)

&

x1 > x2 >…> xn

221

Multi-performing systems: measures

! Reliability-like measures:
 continuous delivery of service according to modes {x1, …xp}

 (time to service delivery in modes {xp+1, …xn})

x1 xp
…… xn

……

Rp(t) = Prob.{X(") $ {x1, …, xp} # " $ [0, t] }

! Availability-like measures:
service delivery according to {x1, …xp} relative to alternation
between modes {x1, …xn}

Ap(t) = Prob.{X(t) $ {x1, …, xp} }

Particular cases

! 1 correct service mode: x1 = c

! 2 incorrect service modes with very different severity levels

" Benign incorrect service: x2 = ib

" Catastrophic benign service: x2 = ic

R1(t) = Prob.{X(") = c # " $ [0, t] } " Reliability

R2(t) = Prob.{X(") $ {x1, x2} # " $ [0, t] } " Safety

x1=c

x2=ib

x3=ic

catastrophic failure

benign failure

restoration

222

MTTF, MTTR, MUT, MDT, MTBF

! MUT: mean up time (correct service delivery cycle)

! MTBF: mean time between failures

MUT = lim
k=(

E{!1} + E{!2} +… + E{!k}

k

! MDT: mean down time (incorrect service delivery cycle)

MDT = lim
k=(

E{%1} + E{%2} +… + E{%k}

k

MTBF = MUT + MDT ! MUT

! MTTF: mean time to failure

MTTFk = E{!k}

! MTTR: mean time to restoration (repair)

MTTRk = E{%k}

!k %k

Availability

! A(t) = Prob. {X(t) = 1} = E {X(t)} A(t) = 1-A(t) = Prob. {X(t) = 0}

! U(T): cumulated uptime (“correct service delivery time”) in [0,T]

Average Availability in [0,T] = proportion of cumulated uptime in [0,T]

E {U(T)} =1

T
Aav(T)E { X(t)dt} =1

T
'

T

0
E {X(t)}dt =1

T
'

T

0
A(t) dt =1

T
'

T

0

! Steady-state Availability:

A =
MUT

MUT+MDT
A = 1-A =

MDT

MUT+MDT

Availability

Unavailability

Downtime (min/year)

0.99

5256

0.01

0.999

525.6

0.001

0.9999

52.56

0.0001

0.99999

5.256

0.00001

0.999999

0.5256

0.000001

A= lim A(t) = lim Aav(T)
t=(T=(

! Interval Availability: AI(t) = A(x) dx1

t
'

t

0

! stable reliability

223

Stable reliability Reliability growth

Identical stochastic distributions
of times to failure !k:

Prob.(!k < t) = Prob.(!k-1 < t)

after restoration,
system identical to what it was

at previous restoration

progressive removal of
residual development faults

(without introduction
of new faults)

failed components
replaced by identical

non failed components

Hardware Software

restart Reliability growth

time

Time to
failure

time

Stochastic increase
 of times to failure !k:

Prob.(!k < t) < Prob.(!k-1 < t)

Time to
failure

Time to event occurrence characterization

! : time to occurrence of a given event E

name symbol definition properties

Distribution
function

Complementary
Distrib. function
(survival funct.)

F(t) Prob.(! ! t)

F(t) Prob.(! > t)

Probability
density function f(t)

f(t).)t= Prob.(t <!" t+)t)

f(t) = =
dF(t)

dt

-dF(t)

dt

hazard rate
z(t)

z(t).)t= Prob.(!"t+)t |!>t)

z(t) =
1

F(t)

-dF(t)

dt

monotonous increasing
function: F(0)=0 F(#)=1

monotonous decreasing
function: F(0)=1 F(#)=0

' f(t).dt = 1
0

#

Mean time to occurrence of event E : E(!)= ' t.f(t).dt
0

#

= ' F(t).dt
0

#

224

Relationships between measures

F(t)

F(t)

F(t)

f(t) -dF(t)

dt

z(t) 1

F(t)

-dF(t)

dt

' f(x).dx
0

t

F(t) f(t) z(t)

1-F(t)

' f(x).dx
t

#

' ,z(x).dx
0

t

1-exp.

1-F(t) ' ,z(x).dx
0

t

exp.

dF(t)

dt
' ,z(x).dx
0

t

z(t) exp.

1 dF(t)

dt1-F(t)

f(t)

' f(x).dx
t

#

—

—

—

—

! exponentially distributed with constant failure rate z(t) = *

F(t) = 1 - exp.(-*t) F(t) = exp.(-*t) f(t) = * exp.(-*t)

E(!) = 1/*

Single component system

! failure rate: * + MTTF = 1/*

A(t+dt)= Prob. (correct service at t AND no failure in [t, t+dt])
 + Prob. (incorrect service at t AND restoration in [t, t+dt])

A(t+dt) = A(t) (1- *dt) + (1-A(t)) µdt

dA(t)

dt
= µ - (*+µ)A(t)+

! Reliability: R(t) = F(t)= exp.(-*t)

! restoration rate: µ + MTTR =1/µ

! Availability: A(t)

A(t)

1

0

A(0)=1
µ

* + µ

" 1/µ

exp. (-(* + µ)t)
µ

* + µ
+

*

* + µ
A(t)=

t

A(0)=0

µ

* + µ
[1-exp. (- (* + µ)t]A(t)=

225

Multi-component systems modelling

! Model construction " describe system behavior

" Structure

" components failures, fault tolerance/restoration strategies

! Model processing " evaluate quantitative measures

Combinatorial models
(Reliability block diagrams,

fault trees, reliability graphs, ..)

State-based models
(Markov chains, Stochastic Petri
nets, non-Markovian models, ..)

Stochastically
independent components

Stochastic
dependencies

occurrence of event A
does not affect event B

Prob. {A.B} = Prob.{A} . Prob.{B}

occurrence of event A
affects event B

Prob. {A.B} # Prob.{A} . Prob.{B}

Reliability Block Diagrams

! Graph topology describing how components reliability
affect system reliability

" Each component represented as a block

SERIES
non-redundant systems

Component

1

Components whose failure lead to
system failure

Component

2

Component

n

PARALLEL
redundant systems

Component

1

Component

2

Component

n

Components whose failure lead to
system failure only in

combination with others

GRAPH PATH - CORRECT SERVICE

226

Model processing

Rk: component k reliability, k = 1, …, n R: system reliability

! SERIES SYSTEMS

R= Prob. {system non failed}
R= Prob. {comp. 1 AND comp. 2 non failed AND comp. n non failed}

Stochastically independent components + R = / {comp. k non failed}
k=1..n

R = / Rk
k=1..n

' ,*(x).dx
t

Rk(t)= exp.
0

R(t)= exp.{- 0 *k(x).dx}
k=1..n

+ * (t)=- 0 *k(t)
k=1..n

identical components with *k(t)= * + MTTF= 1/(n*)

! PARALLEL SYSTEMS

System failed only when All components failed

1-R = / {1- Rk}
k=1..n

R = 1- / {1- Rk}
k=1..n

Parallel-Series systems

C21

C23

C22

C111

C12

C112

C11

C1 C2

R 11 = R 111 . R 112

R 1 = 1 - (1 - R 11) . (1 - R 12)

R 2 = 1 - (1 - R 21) . (1 - R 22) . (1 - R 23)

R = R 1 . R 2

227

“k-out of-n” systems with voter

! n components and a voter

! System non failed when less than k components failed

C1

C2

Cn

k/n
.
.

RC: reliability of Component j
 j=1,…n (identical comp.)

Rv: reliability of Voter

R: system reliability

R (t) = [C [Rc(t)] • [1- Rc(t)]] • Rv
 j=r

1
n

j

n

 n-jj

TMR systems

! “2-out of- 3” system with perfect voter

R (t) = 3 [Rc(t)]
2 - 2 [Rc(t)]

3

Rc(t) = exp (-* t) + R (t) = 3 exp(-2* t) - 2 exp(-3* t)

MTTFc = 1 / * > MTTF = 5 / 6 *

MTTF MTTFc

1 2

1

0.5

* t

Rc(t)

R(t)

useful region

0

!

Be careful when using
MTTF to characterize

dependability

228

Availability evaluation

! The same approach can be applied provided that the
components are stochastically independent with respect
to failures AND restorations + 1 repairman per
component

Ak: component k availability, k=1, …, n

A: system availability

A = / Ak
k=1..n

A = 1- / {1- Ak}
k=1..n

Series systems:

Parallel systems:

Fault trees

! Deductive top-down approach: effects ! causes

" Starting from an undesirable event, represent graphically
its possible causes (combinations of events)

" Combination of events: Logical gates

AND OR

Basic gates

E E

E1 E2 E1 E2

! Example:

" System: 3 components X, Y, Z

X, Y: parallel

Z: series with {X,Y}

X

Y

Z

Elementary events: failures of X, Y, Z
System event: system failure

229

Example

System failure

 {X,Y} failure
Z failure

X failure Y failure

Model processing

Stochastically independent components

! AND gate

" Output event E occurs when input events E1 AND E2 AND … En occur

" Two elementary events:

E = E1. E2 . … . En

Prob.(E) = Prob.(E1) . Prob.(E2). … . Prob.(En)

! OR gate

" Output event E occurs when input event E1 OR E2 … OR En occur

E = E12 E2 2 … 2 En

E = E1. E2 . … . En

Prob.(E) = 1 - [1 - Prob.(E1)] . [1 - Prob.(E2)]. … . [1 - Prob.(En)]

E = E12 E2

Prob.(E) = Prob.(E1) + Prob.(E2) - Prob.(E1). Prob. (E2)]

230

Example

System failure

 {X,Y} failure
Z failure

X failure Y failure

 [1 - RX] [1 - RY]

1 - RZ

1 - RX 1 - RY

1 - R = 1 - RZ + [1 - RX] . [1 - RY] - [1 - RZ] [1 - RX][1 - RY]

R = RZ [RX + RY - RX RY]

&

Minimal cut sets

! Cut set

" set of events whose simultaneous occurrence leads to the
occurrence of the top event of the tree

! Minimal cut-set

" Cut-set that does not include any other

" Order: number of events of the cut set

Order 1: a single event could lead to Top event

! Each minimal cut set of a fault tree describes significant
combination of faults that could lead to system failure

" Critical components

" Identify design weaknesses " redundancy needs

231

Minimal cut set computation: Boolean algebra

A . A = A

A 2 A = A

A 2 B = A si A 3 B

A . B = B si A 3 B

A . (B 2 C) = (A . B) 2 (A . C)

A 2 (B . C) = (A 2 B) . (A 2 C)

A 2 B = A . B

A . B = A 2 B

A 2 (A . B) = A 2 B

A . (A 2 B) = A . B

Minimal cut sets: example

E3 = B2C T = E1.E2 = (A2B2C) . (C 2 (A.B))

E1 = A2(B 2 C) = A2B2C T = (A2B2C) . C 2 (A2B2C) . (A.B)

E4 = A.B T = (A.C) 2 (B.C) 2 C 2 (A.B) 2 (A.B) 2 (A.B.C)

E2 = C 2 (A.B) T = C 2 (A.B)

T

E1 E2

E3A

B C

E4C

A B

232

Reduced fault tree

Prob.{T}= Prob.{C2(A.B)}

= Prob.{C}+Prob.{A} Prob.{B} - Prob.{A} Prob.{B} Prob.{C}

T

EC

A B

Cut sets: Reliability computation

Prob.(T) bounds:

$ Prob.{Ci} - $ $ Prob.{Ci . Cj}" Prob.{T}"$ Prob.{Ci}
i = 1

m

j = 2

m

i = 1

j-1

i = 1

m

Prob.{T} ! $ Prob.{Ci}
i = 1

m

Ci minimal cut set - ordre mi : Ci = E1i . E2i . … . Emi

 Emi : basic events T : top event

Prob.{T} = P{C1 2 C2 2 … Cm }

Prob.{T} = $ Prob.{Ci} - $ $ Prob.{Ci . Cj}

 + $ $ $ Prob.{Ci . Cj} + … (-1)m Prob.{Ci . Cj … . Cm}

j = 2

m

i = 1

j-1

i = 1

m

k = 3

m

j = 2

k-1

i = 1

j-1

If probability of occurrence of basic events small:

233

Reliability block diagrams & Fault trees

! Pros

" useful support to understand system failures and
relationships with components failures

" Model processing is easy: powerful tools exist

" Helpful to identify weak points in the design

! Cons

" Components and events should be stochastically
independent

some extensions take into account some kinds of
dependencies (e.g., extended fault trees)

Stochastic dependencies: example

! Example:

" system with two components: C1 (primary), C2 (standby)

*1

 C1

*2(t)

*2sb

*2a

t

C
1
 failure

 C2

C2 standby C2 active

*1(t)

0
 + *1 exp (- *1") d" exp (- *2sb") exp (- *2sb (t - "))'

t

R(t) = exp (- *1t) + *1 exp (- *2a t) ' exp (- (*1+ *2sb- *2a)") d"
0

t

R(t) = Prob. {System operational during [0, t]}

C1 operational during [0, t] + exp (- *1t)

C1 fails at " AND C2 nonfailed during [0, "] AND C2 operational during [", t]

R(t) = exp (- *1t) + *1 exp (- *2a t) { (1- exp (- (*1+ *2sb- *2a)t}/(*1+ *2sb- *2a)

234

State-based models

! Example:

" system: two components X,Y; 1 repairman per component

" Component states:

Xc, Yc (correct service); Xi, Yi (incorrect service)

" System states: (Xc, Yc), (Xi, Yc), (Xc, Yi), (Xi, Yi)

failure Y
(Xc, Yi)

(Xi, Yc)

(Xi, Yi)(Xc, Yc)

restoration Y
restoration X

failure X

failure X failure Y

restoration X
restoration Y

!

"

#

$

Redundant system:
" Correct service: !, ", $

" Incorrect service: #

Nonredundant system:
" Correct service: !

" Incorrect service: ", $, #

Reliability model

! Computation of Pj(t) depends on the probability distributions
associated to state transitions

! Homogeneous Markov chains: constant transition rates

Availability model

failure Y (Xc, Yi)

(Xi, Yc)

(Xi, Yi)(Xc, Yc)

restoration Y

failure X

failure X
failure Y

restoration X

!

"

#

$

failure Y (Xc, Yi)

(Xi, Yc)

(Xi, Yi)(Xc, Yc)

restoration Y
restoration X

failure X

failure X
failure Y

restoration X
restoration Y

!

"

#

$

A(t) = P1(t) + P2(t) + P3(t)R(t) = P1(t) + P2(t) + P3(t)

Pk(t): probability system in state k at t

235

Homogeneous Markov chains

failure rates: *X, *Y

restoration rates: µX, µY

P1(t+dt) = [1 - (*X dt + *Y dt)] P1(t) + µY dt P2(t) + µ X dt P3(t)

• 1 - (*X dt + *Y dt) = Prob.{stay in ! during [t, t+dt]}

• µY dt = Prob.{ transition " to ! during [t, t+dt]}

• µX dt = Prob.{ transition $ to ! during [t, t+dt]}

P2(t+dt) = *Y dt P1(t) + [1 - (*X dt + µ Y dt)] P2 (t) + µX dt P4(t)

P3(t + dt) = *X dt P1(t) + [1 - (*Y dt + µX dt)] P3(t) + µY dt P4(t)

P4(t + dt) = *X dt P2(t) + *Y dt P3(t) + [1 - (µX dt + µY dt)] P4(t)

Only one transition might occur during [t, t+dt]:

* X

* Y

µ Y

µ X

µ X

* X

* Y

µ Y

1

2

3

4

Availability computation

* X

* Y

µ Y

µ X

µ X

* X

* Y

µ Y

1

2

3

4

P’1(t) = - (*X + *Y)P1(t) + µ Y P2(t) + µX P3(t)

P’2(t) = *Y P1(t) - (*X + µY)P2(t) + µX P4(t)

P’3(t) = *X P1(t) - (*Y + µX)P3(t) + µY P4(t)

P’4(t) = *X P2(t) + *Y P3(t) - (µX+µY)P4(t)

Matrix form:

P’(t) = P(t) . " - (*X + *Y) * Y *X 0

µY - (*X + µY) 0 *X

µX 0 - (*Y + µX) *Y

0 µX µY - (µX + µY)

" =
P (t) : state probability vector

" : Infinitesimal generator matrix

 (transition rate matrix)

3

A
A(t) = P1(t) + P2(t) + P3(t) = P (t) . 1 : summation vector=

1
1
1
0

1
3

A

Solution: P(t) = P(0) . exp(-"t)

236

Reliability computation

* X

* Y

µ Y

µ X

* X

* Y

1

2

3

4
P’c (t) = Pc(t) . "cc

- (*X + *Y) * Y *X

µY - (*X + µY) 0

µX 0 - (*Y + µX)

P"1(t) P"2(t) P"3(t) = P1(t) P2(t) P3(t)

Pc(t) : correct service states probability vector

"cc : transition rate matrix — correct service states

3

R
R(t) = P1(t) + P2(t) + P3(t) = Pc(t) . 1 : summation vector=

1
1
1

1
3

R

Solution: Pc(t) = P(0) . exp(-"cct)

Generalization: m states

 Transition rate matrix: " = [*jk]

State probability vector:

 P (t) = (P1(t) P2(t) … Pm(t)) P (t) = (Pc (t) Pi(t))

*jk j%k : transition rate between states j and k (off-diagonal terms)

*jj,= - *jk j%k : diagonal terms
 k=1, k# j
1
m

"cc "ci

"ic "ii

" =

Correct
service

Incorrect
service

mc states

mi states

Correct
service

Incorrect
service

mc + mi = m

(P1(t) P2(t) … Pmc(t)) (Pmc+1(t) Pmc+2(t) … Pm(t))

237

Quantitative measures: summary

! A (t) = P(0) . exp (" t) . 1mc

! A = lim A(t) = #c . 1mc

" #c = (0 0 … 0 1j 0 … 0) . "j . 1mc

" "j = obtained from " by replacing jth column by “1”

! R(t) = Pc(0) . exp ("cct) . 1mc

! MTTF = -Pc(0) . "cc . 1mc

! MTTR = -Pi (0) . "ii . 1mi

! MUT =

! MDT =

#c . 1mc

#c . " ci . 1mi

MUT + MDT = MTBF =
#c . " ci . 1mi

1

#i . 1mi

#c . " ci . 1mi

mc "1", mi "0"=

1
 .
 .
1
0
 .
 .
0

1
mc

A

mc "1"= 1
mc

1
 .
 .

1

A

A

mi "1"= 1
mi

1
 .
 .

1

-1 A

-1

-1

 t=(

Markov reward models

! Useful for combined performance-availability evaluation
(“performability”)

! Extension of continuous time Markov chains with rewards

" Reward: performance index, capacity, cost, etc.

! Quantitative measures

" ri = reward rate associated with state i of the Markov chain

" Z(t) = rX(t) : instantaneous reward rate of Markov chain X(t)

Y(t) = Z(x) .dx'
t

0

Expected instantaneous reward rate: E[Z(t)] = 0 ri . Pi (t)

Expected steady-state reward rate: lim E[Z(t)] = 0 ri . $i t=(

" Y(t) = accumulated reward in [0, t]

E[Y(t)] = 0 ri . Pi (x). dx'
t

0

238

Modelling of complex systems

! Model largeness

" Number of
components,
dependencies

! Stiffness

" parameters on
different time scales

! Largeness/stiffness tolerance and
avoidance techniques

" automatic generation of state
space using Stochastic Petri nets
and their extensions

" Structured model composition
approaches with explicit
description of dependencies

" Hierarchical model
decomposition and aggregation

" Robust model solution and
efficient storage techniques

! Non exponential
distributions

" Use of semi-Markov or non
Markovian models

" Approximation by exponential
models using method of stage

" Use of simulation

Petri nets, SPNs and GSPNs

! A Petri net (PN) is defined by (P, T, I, O, M)

" P: Places, represent conditions in the system

" T: Transitions, represent events

" I, O: Input, Output arcs connecting places and
transitions

" M: initial marking, number of tokens in each place

! Stochastic Petri nets (SPNs)

" PNs with exponentially distributed timed transitions

! GSPNs (Generalized Stochastic Petri Nets)

" PNs with exponentially distributed timed transitions
and instantaneous transitions

! Advantages

" Suitable for describing concurrency, synchronization, …

" Reachability graph isomorphic to a Markov chain

p1

p2

p2

c 1-c

µ1 µ2

p1

239

Example 1: computer system with two failure and
restoration modes (imperfect detection)

µ1 µ2

P1: system OK
P2: error activated
P3: nondetected error
P4: detected error

T1: fault activation
T2: detection
T3: nondetection
T4: restoration
T5: periodic maintenance

P2

c 1-c

P1

*

P3P4

T1

T3T2

T5T4

2

3

T2

T1

1 0 0 01

0 0 1 0 4 0 0 0 1

T3

T5T4

0 1 0 0

c *

(1-c) *

µ1

1

µ2

3 4

Reachability graphGSPN

Markov chain

Example 2: N redundant component system,
1 repairman per component

GSPN

0 1 k N

N% (N -1)% %

Nµµ

(N -k)%

2µ (k+1)µ

N Up
0 Down

N-1 Up
1 Down

N-k Up
k Down

0 Up
k Down

Markov chain

P1

M(P1). *

N

P2

M(P2). µ

240

Hardware- software with error propagation

H-ok

*
h 4

h

H-e

h

1-pph

µ

H-t

5
h

H-nd

h
1-d

H-p

d
h

H-u

h
"

H-fd

Hardware model

*
s

S-ok

4
s

6

S-e

s
"

S-fd

d
s

s
d1-

s
p1-

S-nd

5 p
ss

S-u

S-d

7 s

S-ft

Software model

pph

Prop

1-pph

tp

tn
Ps

Error propagation model

Block modeling approach

! Structured composition modeling of complex systems
with explicit description of dependencies

" Dependencies:

functional, structural, due to maintenance
or fault tolerance strategies

! Block-Model (high-level model)

" Blocks + model

Components behavior

Dependency between components

" Arrows: interactions

! Detailed model

" Block + GSPN

! Application to CAUTRA:French air traffic control comp. Syst.

" Comparative availability analysis of 16 alternative architectures

241

Illustration: Duplex System

! Composition

" Two software replica
(principal & spare), with
communications

" Two hardware components

! Software reconfiguration after

principal replica failure

" Role switching

! Hardware maintenance and

fault tolerance

" One permanent fault

" One repairman

! Software 89 Software

" Error propagation (Prop)

" Reconfiguration (RecSoft)

! Hardware 89 Hardware

" Sharing of one repairman
(RepHard

! Hardware 9 Software

" Error propagation (Prop)

" Stop and restart (Stop)

" Global reconfiguration
strategy (Strat)

Block model of the Duplex system

N
Hard1

N Hard2

N Soft1 Soft2N

NStrat

N RecSoft

PropN
PropN

N RepMat

N RepHard

N Stop PropN’ N’Prop N Stop

242

pph

Prop

1-pph

tp

tn
Ps

Block model 9 GSPN

Hardware model Software model

H-ok

*
h 4

h

H-e

h
1-pph

µ

H-t

5
h

H-nd

h
1-d

H-p

dh

H-u

h
"

H-fd

*
s

S-ok

4 s

6

S-e

s
"

S-fd

d
s

s
d1-

s
p1-

S-nd

5 p
ss

S-u

S-d

7s

S-ft

Error propagation model

NHard1

N Soft1

PropN’

N Soft1

NHard1

PropN’

Tools

ADVISER, ARIES, CARE III, METFAC, SAVE, SURE, ASSIST, HARP, etc..

Surf-2

UltraSAN

SPNP Multi-formalism (SPNs, Stochastic Reward nets,

NonMarkovian, fluid models)

Duke, USA

LAAS, France

UIUC, USAStochastic Activity Networks (SANs)

GSPNs, Markov

SHARPE Duke, USAMulti-formalism (Combinatorial , state-based)

hierarchical models

Great-SPN GSPNs and stochastic well formed nets Torino, Italy

Möbius UIUC, USAMulti-formalism (SANs, PEPA, Fault tree,…

DSPNexpress Deterministic and stochastic Petri nets
Dortmund, Germany

TimeNET Hamburg, GermanynonMarkovian SPNs

DEEM Deterministic and SPNs, Multi-phased systems UNIFI-PISA, Italy

DRAWNET++ Multi-formalism (Parametric Fault trees, SWN) U. del Piemonte orientale,

U.Torino, U. Napoli, Italy

243

Software Reliability Growth Models

! N(t) = Number of failures during [0, t]

predictionobservation

h(t)

time

! Failure intensity: h(t) =
d

dt
E[N(t)]

NHPP models:
N(t) described as a Non

Homogeneous Poisson Process

Models with decreasing
failure rates

*0

 *(t)

t1

.

.

.

0
t2 tN-1 ttN

*N

Reliability growth models: Examples

h(t)

t

h(t)

 h(t) = N :2 t exp (- : t)

h(t)

t

 * i(t) =
;

t+<(i)
 < (i) = = 1+= 2i

*(t)

t

Hyperexponential

Exponential

S-Shaped

Doubly Stochastic

h(t) =
>5sup e,5sup t + ?5inf e-5inf t

>e-5supt ?e-5inft+

Model h(t) or *(t) shape

 h(t) = N : exp (- : t)

244

Global method

Validated

data

Objectives

of the study

Failure

severity
Phase Components

Data Validation

Collected data

 Descriptive analyses

Reliability Reliability TrendsTrendsDescriptive Descriptive StatisticsStatistics Reliability MeasuresReliability Measures

Development

Validation &

Operation

Fault

Types

Data partitioning

Feedback on Feedback on the development processthe development process

Data from similar

projects/products

Data Collection1

2

3

4 5 6

• • •

Trend analysis Model Application

Models calibration and validation - data

! Estimation of model parameters based on data collected from
operation, controlled experiments or using expert judgments

Central
Switch

Controlled experiments

 (testing, fault injection)

data collection
 in operation

event logs
failure reports

(automatic/manual)

fault load
workload

controller

logfiles

Exp.

measures

system under test

with instrumentation

Failure modes

Fault coverage

Error detection
latency

data processing and statistical analysis techniques

Failure rates,
Repair rates, Failure modes

245

Assessment based on operational data

Raw
data

Data
pre-processing

Statistical
analysis and
modelling

measures
trends

(data clustering algorithms)

• Failure/error distributions
• Failure/error recovery
 rates Availability estimation
• Impact of workload
• Error propagation analysis

• Extraction of relevant
 information
• identification/categorization
 of errors, failures, reboots
• occurrence times, durations

• event logs
• failure reports

time

CPU CPU CPU CPU errordisk disk Disk errorSW error

Normal
activity event

Reboot

! Measurement-based studies and trends

" Trends: Hardware, Software, distributed systems and middleware,
Internet, Human-computer interaction, security, wireless, etc..

" Systems: FTMP, SIFT, TANDEM, VAX, SUNOS/Solaris, Windows NT/2K,
Linux, Symbian OS..

Examples (1)
! DEC VAXCluster Multicomputer

" 7 processing nodes et 4 disk controllers connected through a bus

" 8 months (december 1987 — August 1988)

 MTTF * MTTR µ coverage

CPU 8400 h 1.19 10-4 /h 24.8 min 2.42 /h 0.970

Disk 656 h 1.52 10-3 /h 110 min 0.54 /h 0.997

Network 1400 h 7.14 10-4 /h 53.4 1.12 /h 0.991

Software 677 h 1.48 10-3 /h 24.4 2.46 /h 0.1

! CMU Andrew file server

" 13 SUN II workstations - collection period: 21 workstation.year

Permanent failures 6552 h 29

Intermittent faults 58 h 610

Transient faults 354 h 446

System crashes 689 h 298

Mean time to occurrence

(per system)
Number of events

(all systems)

246

Assessment based on operational data (2)
! LAAS-CNRS local area network

" 418 SunOS/Solaris, 78 Windows NT, 130 Windows 2K

" Jan. 1999-Oct. 2003: 1392 system.year - 50 000 reboots

Unix Windows NT Windows 2K

Reboot
 rate

10-3/hour

3.9 10-3/hour 5.3 10-3/hour

Mean
Uptime

12.8 day

1.5 day 1.08 day

Mean
Downtime

180 min

30 min 35 min

Average
Unavailability

4.4 day/year

11.6 day/year

5.7 day/year

Fault tolerance efficiency assessment

Fault Error Failure

tF Dormancy Latency

Error/Fault handling mechanisms

tE tD

Fault tolerance coverage
C = Prob.{correct service delivery/fault}

Error and Fault
handling Coverage

Assumption
Coverage

Duplex system
(hot standby)

2c.*

2(1-c).*

*µ

1 2

3

Component failure rate: *
Component repair rate: µ

system failure rate: *S

2

10-4 10-3 10-2

c = .95

c = .9

c = .99

c = .995

c = .999 c = 1

101

10

10

104

1

3

µ*

*S

*

fault tolerance

coverage impact

247

Experimental assessment

! Fault injection target

" HW, drivers, OS, API, middleware,
application

! Fault model

" Bit-flips (data, code segments, parameters)

" instruction mutation, dropping messages, …

fault load
workload

controller

logfiles

Exp.

measures

FT system under test

with instrumentation

Simulation Model Prototype/real system

Simulation
based

Software
implemented

Physical

Node % ORCHESTRA
task % FIAT
executive % Ballista, MAFALDA
mem. % DEF.I, DITA
instr. % FERRARI
processor % Xception

system % DEPEND, REACT, ...
RT Level % ASPHALT, ...
Logical gate % Zycad, Technost, ...
circuit % FOCUS, ...
...
wide range % MEFISTO,

VERIFY(VHDL)

Heavy ions % Chalmers U.
EM perturbations % TU Vienna
pins % MESSALINE, Scorpion,

 DEFOR, RIFLE,..

! Fault injection techniques

Delta-4 project

Spare node

NAC : Network Attachment Controller
AMp : Atomic Multicast protocol

D Predicate:
Auto-extraction
of faulty node

T Predicate:
Protocol Properties OK
and errors confined

Target System

NAC/AMp

Host HostHost Host

NAC/AMp NAC/AMpNAC/AMp

1) Standard
2) Duplex architecture

Successive
versions of AMp

Physical injection

(MESSALINE)

0%

20%

40%

60%

80%

10ms 100ms 1s 10s 100s

NAC
"duplex"

NAC
standard

100%
D Pred. T Pred.

non
significant
experiments

F E TD

Failure

94% 86% 99%

0.5%6% 1%

13.5%

Non detected

but tolerated

detected but

not tolerated

248

POSIX OS robustness testing (BALLISTA)

Normalized failure rate (%)

15 «!(C)OTS!» OSs
[Koopman & DeVale 99 (FTCS-29)]

AIX

FreeBSD

HP-UX B.10.20

Linux

LynxOS

QNX 4.24

SunOS 5.5

NetBSD

Irix 6.2

Irix 5.3

HP-UX B.9.05

OSF-1 3.2

OSF-1 4.0

QNX 4.22

SunOS 4.13

Abort

Silent

Restart

Catastrophic

0 10 20 30 40 50

POSIX System call parameter mutation

(233 functions)

Dependability benchmarking

! “Standardised” framework for evaluating dependability and
performance related measures experimentally or based on
experimentation and modeling

" Characterize objectively system behavior in presence of faults

" Non-ambiguous comparison of alternative solutions

! Non-ambiguity, confidence, acceptability ensured by a set of
properties:

" Representativeness, Reproducibility, Repeatability, Portability,
Non-intrusiveness, Scalability, Cost effectiveness

! Benchmark = specification of a set of elements (dimensions)
and a set of procedures for running experiments on the
benchmark target to obtain dependability measures

! DBench IST project (www.laas.fr/dbench)

! SIGDeb: Special Interest Group on Dependability
Benchmarking (IFIP 10.4 WG)

249

DBench: Benchmarks developed

! General purpose operating systems

" Robustness and timing measures, TPC-C Client, faulty
application

! Real-time kernels in onboard space system

" Predictability of the kernel response time, faulty application

! Engine control applications in automotive systems

" Impact of application failures on system safety, transient
hardware faults

! On-line transaction processing (OLTP) environments

" TPC-C-based, operator, software & hardware faults

" Web-servers, SPEC-based, operator, software & hardware faults

Evaluation wrt. malicious threats

! Historically, attention has been mainly focused on prevention
and protection approaches, and less on evaluation

! Traditional evaluation methods

" Qualitative Evaluation criteria

TCSEC (USA), ITSEC (Europe), Common Criteria

Security levels based on functional and assurance criteria

" Risk assessment methods

Subjective evaluation of vulnerabilities, threats and
consequences

" Red teams: try to penetrate or compromise the system

Not well suited to take into account the dynamic evolution
of systems, their environment and threats during
operation, and to support objective design decisions

! Need for security quantification approaches similar to those
used in dependability relative to accidental faults

250

Security quantification challenges

! Defining representative measures

" Are new measures needed?

! Modeling attackers behaviors and system vulnerabilities
and assessing their impact on security properties

" How different is it, compared to modeling accidental faults
and their consequences?

! Elaborating representative assumptions

" Continuous evolution of threats and attackers behaviors

" Need for unbiased and detailed data

Measures Models Data

Measures and Models

! Feasibility of a probabilistic security quantification explored
early in the 1990’s (PDCS and DeVa projects)

" Measure = effort needed for a potential attacker to defeat the
security policy [City U.]

" Preliminary experiments using tiger teams [Chalmers U.]

" A “white-box” approach for modeling system vulnerabilities and
quantifying security, using “privilege graph” [LAAS-CNRS]

! Graph-based models for the description of attack scenarios

" Attack graphs, attack trees, etc.

! Stochastic state-based models to assess intrusion tolerant syst.

" DPASA “Designing Protection and Adaptation into a Survivable Arch.”

" SITAR Intrusion Tolerant System [Duke, MCNC]

! Epidemiological malware propagation models

! Complex network theory, game theory, etc.

251

LAAS quantitative evaluation approach

! Motivation

" Take into account security/usability trade-offs

" Monitor security evolutions according to configuration and
use changes

" Identify the best security improvement for the least
usability change

! Probabilistic modeling framework

" Vulnerabilities

" Attackers

! Measure = effort needed for a potential attacker to defeat the
security policy

! Application to Unix-based systems

Overview

Node = set of privileges

Arc = vulnerability class

path = sequence of vulnerabilities
that could be exploited by an attacker
to defeat a security objective

weight = for each arc, effort to
exploit the vulnerability

Vulnerabilities Modeling
privilege graph

Generation of attack scenarios

Measures

Assumption LM
Local Memory

METF: Mean-Effort to Security Failure

Application to
LAAS LAN

ESOPE tool

Assumption TM
Total Memory

BP1

objective

C

F

1
2

4

5

6

7

3

intruder

3

3

6 5

7

4

12

1

1

1

1

33

2

2

3

3
3

3
3 3

3

3

3 6

6

66666

5

555
7

6

4 4

4

6 6

0,1

1

10

102

103

06/04 08/04 09/04 11/04 12/04 02/05 04/96 05/05 07/05

Date

METF-SPMETF-LM

METF-TM # paths

252

Open issues

! Is the model valid in the real world?

! TM and ML are two extreme behaviors, but what would
be a “real” attacker behavior?

! Weight parameters are assessed arbitrarily
(subjective?)

" Tenacity? Collusion? Attack rates?

! We need real data !!

Data

! Measurement

" monitoring and collection of real attack data to learn
about malicious activities on the Internet

Exploited vulnerabilities, attacks tools, propagations, etc.

! Honeypots

" “an information system resource whose value lies in
unauthorized or illicit use of that resource” [Spitzner 2002]

! Internet Telescopes and honeypot based project

" CAIDA, Internet Motion Sensor, Team Cymru Darknet, …

" Leurré.com

! Logs sharing

" Dshield, Internet Storm Center, WorRadar, ……

! Vulnerabilities databases

253

Leurré.com

! Deploy on the Internet a large number of identically
configured low-interaction honeypots at diverse locations

! Carry out analyses based on collected data to better
understand threats and build models to characterize attacks

80 honeypots - 30 countries - 5 continents

R

e

v

e

r

s

e

F

i

r

e

w

a

l
l

Internet

Windows 98

workstation

Windows NT

(ftp+web server)

Redhat 7.3

(ftp server)

Observer (tcpdump)

V

i

r

t

u

a

l

S

w

i

t

c

h

Win-Win partnership

! The interested partner provides:

" One old PC (PentiumII, 128M RAM, 233 MHz, …)

" 4 routable IP addresses

! Eurecom offers

" Installation CD Rom

" Remote logs collection and integrity check

" Access to the whole SQL database

! Collaborative research projects using collected data

" CADHo: (Eurecom, LAAS, CERT-Renater)

Analysis and modeling of attack processes using low
interaction honeypots data

Development and deployment of high-interaction honeypots
to analyze behavior of attackers once they get access and
compromise a target

254

Overview of collected data
! Data collection since 2003

" 3026962 different IP addresses from more than 100 countries
" 80 honeypot platform deployed progressively

H
o
n
e
y
p
o
t
p

la
tf
o
rm

date

! Information extracted from the logs
" Raw packets (entire frames including payloads)

" IP address of attacking machine

" Time of the attack and duration

" Targeted virtual machines and ports

" Geographic location of attacking machine (Maxmind, NetGeo)

" Os of the attacking machine (p0f, ettercap, disco)

Analysis and modeling of attack processes

! Automatic data analyses to extract useful trends and
identify hidden phenomena from the data

" Categorization of attacks according to their origin, attack tools,
target services and machines, etc.

" Analysis of similarities of attack patterns for different honeypot
environments, etc.

" Publications available at: www.leurrecom.org/paper.htm

! Stochastic modeling of attack processes

" Identify probability distributions that best characterize attack
occurrence and attack propagation processes

" Analyze whether data collected from different platforms exhibit
similar or different malicious attack activities

" Predict occurrence of new attacks on a given platform based on
past observations on this platform and other platforms

" Publications available at: www.cadho.org

255

“Times between attacks” distribution

! An attack is associated to an IP address

" occurrence time associated to the first time a packet is received
from the corresponding address

! Best fit provided by a mixture distribution

0.000

0.005

0.010

0.015

0.020

0.025

1 31 61 91 121 151 181 211 241 271
Time between attacks

p
d

f

Pa = 0.0115
k = 0.1183
* = 0.1364/sec.

Mixture (Pareto, Exp.)

Data

Exponential

Platform 6

!

pdf (t) = Pa
k

(t +1)
k+1

+ (1" Pa)#e
"#t

“Times between attacks” distributions (2)

Platform 20 Platform 23

Platform 5 Platform 9

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 31 61 91 121 151 181 211 241 271

Time between attacks

p
d

f

Data

Mixture (Pareto, Exp.)

Exponential

Pa = 0.0019
k = 0.1668
* = 0.276/sec.
p-value = 0.99

0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.01

0.02

1 31 61 91 121 151 181 211 241 271

Time between attacks

p
d

f

Data

Mixture (Pareto, Exp.)

Exponential

Pa = 0.0144
k = 0.0183
* = 0.0136/sec.
p-value = 0.90

0.00

0.01

0.02

0.03

0.04

0.05

0.06

1 31 61 91 121 151 181 211 241 271

Time between attacks

p
d

f

Data

Mixture (Pareto, Exp.)

Exponential

Pa = 0.0031
k = 0.1240

* = 0.275/sec.

p-value = 0.985

Time (sec.)0.00

0.01

0.01

0.02

0.02

0.03

0.03

1 31 61 91 121 151 181 211 241 271

Time between attacks

p
d

f

Pa = 0.0051
k = 0.173
* = 0.121/sec.
p-value = 0.90

Data
Mixture (Pareto, Exp.)

Exponential

256

Propagation of attacks

! A Propagation is assumed to occur when an IP address of an
attacking machine observed at a given platform is observed
at another platform

P20

P6

P9

P5

P23

96.1%

0.9%

15.1%

43.2%

0.6%

2.7%

29%

4.1%

1.35%

8.1%

12.6%

54.1%

1.4%

1.37%

15.4%

95.5%

1%

0.6%

1.1%

11.3%

59%

3.7%

30.3%

4.3%

96.1%

95.5%

29%
59%

15.1%

15.4%

11.3%

Discussion

! Preliminary models to characterize attack processes
observed on low-interaction honeypots

! Several open issues

" Need for predictive models that can be used to support
decision making during design and operation

" How to assess the impact of attacks on the security of
target systems?

! Honeypots with higher degree of interaction are needed to
analyse attacker behavior once they manage to compromise
and access to a target

" first results demonstrate their usefulness and complementarity
with low interaction honeypots [Alata et al. 2006]

257

Resilience evaluation: challenges and gaps

Evaluation wrt
malicious faults

Evaluation wrt
accidental faults

Unified approaches for resilience evaluation and

benchmarking of large systems and critical

infrastructures, combining analytical, simulation and

experimental techniques

complexity
evolution
of threats

interdependencies

dynamicity

socio, technical and
economic dimensions

runtime assessment

References

! General background
" K. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science Applications!», 2nd Edition, John

Wiley and Sons, New York, (2001)

" R.W. Howard, Dynamic Probabilistic Systems, vol. I and vol. II John Wiley & Sons, 1971

" J.-C. Laprie, “Dependability Handbook“, CÉPADUES-ÉDITIONS, 1995 (in French)

" B. Haverkort, R. Marie, G. Rubino, K. Trivedi, Performability modeling: Techniques and tools”, John Wiley & Sons, ISBN
0-471-49195-0

" M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli and G. Franceschinis, Modelling with Generalized Stochastic Petri
Nets !Wiley Series in Parallel Computing !John Wiley and Sons ! !ISBN: 0 471 93059 8
(http://www.di.unito.it/~greatspn/bookdownloadform.html)

! Dependability Modeling
" J. Bechta-Dugan, S. J. Bavuso and M. A. Boyd, “Dynamic fault-tree models for fault-tolerant computer systems”, IEEE

Transactions on Reliability, 41, pp.363-377, 1992

" C. Betous-Almeida and K. Kanoun, “Construction and Stepwise Refinement of Dependability Models”, Performance
Evaluation, 56, pp.277-306, 2004

" A. Bondavalli, M. Nelli, L. Simoncini and G. Mongardi, “Hierarchical Modelling of Complex Control Systems:
Dependability Analysis of a Railway Interlocking”, Journal of Computer Systems Science and Engineering 16(4): 249-261,
2001

" N. Fota, M. Kaâniche, K. Kanoun, “Dependability Evaluation of an Air Traffic Control Computing System,” 3rd IEEE
International Computer Performance & Dependability Symposium (IPDS-98), (Durham, NC, USA), pp. 206-215, IEEE
Computer Society Press, 1998. Published in.ﾊPerformance Evaluation, Elsvier, 35(3-4), pp.253-73, 1999

" M. Kaâniche, K. Kanoun and M. Rabah, “Multi-level modelling approach for the availability assessment of e-business
applications”, Software: Practice and Experience, 33 (14), pp.1323-1341, 2003

" K. Kanoun, M. Borrel, T. Morteveille and A. Peytavin, “Modeling the Dependability of CAUTRA, a Subset of the French
Air Traffic Control System”, IEEE Transactions on Computers, 48 (5), pp.528-535, 1999

258

References

! Dependability Modeling (cntd)
" I. Mura and A. Bondavalli, “Markov Regenerative Stochastic Petri Nets to Model and Evaluate the Dependability of Phased

Missions”, IEEE Transactions on Computers, 50 (12), pp.1337-1351, 2001

" M. Rabah and K. Kanoun, “Performability evaluation of multipurpose multiprocessor systems: the "separation of concerns"
approach”, IEEE transactions on Computers, 52 (2), pp.223-236, 2003

" W. H. Sanders and J. F. Meyer, “Stochastic activity networks: Formal definitions and concepts”, in Lectures on Formal
Methods and Performance Analysis. Lecture Notes in Computer Science 2090, pp.315-343, Springer-Verlag, 2001

" M. Kaaniche, K. Kanoun, M. Martinello, “User-Perceived Availability of a web-based Travel Agency”, in IEEE
International Conference on Dependable Systems and Networks (DSN-2003), Performance and Dependability Symposium,
(San Francisco, USA), 2003, pp. 709-718.

! Software reliability evaluation
" Michael R. Lyu (Ed), Handbook of Software Reliability Engineering, Published by IEEE Computer Society Press and

McGraw-Hill Book Company, ISBN-10: 0070394008, 1996, (http://www.cse.cuhk.edu.hk/~lyu/book/reliability/)

" J. Musa, A. Iannino, K. Okumoto, Software Reliability: Measurement, Prediction, Application. McGraw-Hill, 1987

" B. Littlewood and L. Strigini, "Validation of Ultra-High Dependability for Software-based Systems", Communications of the
ACM, vol. 36(11), pp. 69-80, 1993.

" K. Kanoun, J.-C. Laprie, “Software Reliability Trend Analysis: From Theoretical to Practical Considerations,” IEEE
Transactions on Software Engineering, vol. 9, pp. 740-777, 1994.

" K. Kanoun, M. Kaâniche, J.-C. Laprie, “Qualitative and Quantitative Reliability Assessment,” IEEE Software, vol. 14, pp.
77-86, 1997.

" K. Kanoun, M. Kaâniche, C. Béounes, J.C. Laprie, and J. Arlat, “Reliability growth of fault-tolerant software”, IEEE
Transactions on Reliability, IEEE Computer Society, 42(2), pp.205-19, 1985.

" J.-C. Laprie, K. Kanoun, “X-ware Reliability and Availability Modeling,” IEEE Transactions on Software engineering, vol.
SE-18, pp. 130-147, 1992.

" Littlewood, B., P. Popov, L. Strigini, “Assessing the Reliability of Diverse Fault-Tolerant Software-Based Systems”, Safety
Science 40: 781-796, 2002

References

! Experimental measurements and Benchmarking
" P. Koopman, J. DeVale, “The exception handling effectiveness of POSIX Operating Systems”, IEEE Trans. On Softwrae

Engineering, vol. 26, n°9, 2000

" J. Arlat et al., Fault Injection for Dependability Evaluation: A Methodology and some applications”, IEEE Transactions on
Software Engineering, vol. 16, n°2, 1990

" J. Carreira, H. Madeira, , J. G. Silva, “Xception: A Technique for the Evaluation of Dependability in Modern Computers”,
IEEE Transactions on Software Engineering, vol.24, n°2, 1998

" Eric Marsden, Jean-Charles Fabre, Jean Arlat: Dependability of CORBA Systems: Service Characterization by Fault
Injection, SRDS-2002, pp. 276-85, 2002

" R. Chillarege et al. , “Orthogonal Defect Classification — A Concept for In-process Measurements”, IEEE Transactions
on Software Engineering, vol.18, n°11, 1992.

" R. Iyer, Z. Kalbarczyck, “Measurement-based Analysis of System Dependability using Fault Injection and Field Failure
Data”, Performance 2002, LNCS 2459, pp.290-317, 2002

" D. P. Siewiorek et al. “Reflections on Industry Trends and Experimental Research in Dependability”, IEEE transactions on
Dependable and Secure Computing, vol.1, n°2, April-June 2004.

" K. Kanoun, J. Arlat, D. Costa , M. Dalcin, P. Gil, J.-C. Laprie, H. Madeira, N. Suri, “DBench - Dependability
Benchmarking”, Supplement of the Int. Conf. on Dependable Systems and Networks, Göteborg, Sweden, 2001, pp. D.12-
D.15

" Workshop on Dependability Benchmarking, Supplement Volume of 2002 International Conference on Dependable
Systems and Networks (DSN), July 2002, pp. F1-F36, IEEE CS press. Also, papers are available at:
http://www.laas.fr/~kanoun/ifip_wg_10_4_sigdeb/external/02-06-25/index.html.

259

References

! Security
" B. Littlewood, S. Brocklehurst, N. Fenton, P. Mellor, S. Page, D. Wright, J. Dobson, J. McDermid and D. Gollmann,

“Towards Operational Measures of Computer Security”, Journal of Computer Security, 2, pp.211-229, 1993

" M. Dacier, M. Kaâniche, Y. Deswarte, “A Framework for Security Assessment of Insecure Systems”, 1stYear Report of the
ESPRIT Basic Research Action 6362: Predictably Dependable Computing Systems (PDCS2), pp. 561-578 , September 1993,

" E. Jonsson and T. Olovsson, “A Quantitative Model of the Security Intrusion Process Based on Attacker Behavior”, IEEE
Transactions on Software Engineering, 23 (4), pp.235-245, April 1997

" M. Kaâniche, E. Alata, V. Nicomette, Y. Deswarte and M. Dacier, “Empirical Analysis and Statistical Modeling of Attack
Processes based on Honeypots”, in WEEDS 2006 - workshop on empirical evaluation of dependability and security (in
conjunction with the international conference on dependable systems and networks, (DSN2006), pp.119-124, 2006.

" B. B. Madan, K. Goseva-Popstojanova, K. Vaidyanathan and K. Trivedi, “Modeling and Quantification of Security
Attributes of Software Systems”, in IEEE International Conference on Dependable Systems and Networks (DSN 2002),
(Washington, DC, USA), pp.505-514, IEEE computer Society, 2002

" D. M. Nicol, W. H. Sanders and K. S. Trivedi, “Model-based Evaluation: From Dependability to Security”, IEEE
Transactions on Dependable and Secure Computing,, 1 (1), pp.48-65, 2004.

" R. Ortalo, Y. Deswarte and M. Kaâniche, “Experimenting with Quantitative Evaluation Tools for Monitoring Operational
Security”, IEEE Transactions on Software Engineering, 25 (5), pp.633-650, 1999

" V. Gupta, V. V. Lam, H. V. Ramasamy, W. H. Sanders and S. Singh, “Dependability and Performance Evaluation of
Intrusion Tolerant-Server Architectures”, in First Latin-American Symposium on Dependable Computing (LADC 2003),
(Sao-Paulo, Brazil), pp.81-101, IEEE Computer Society, 2003

" F. Pouget, M. Dacier, J. Zimmerman, A. Clark, G. Mohay, “Internet attack knowledge discovery via clusters and cliques of
attack traces”, Journal of Information Assurance and Security, Volume 1, Issue 1, March 2006 , pp 21-32

" E. Alata, V. Nicomette, M. Kaâniche, M. Dacier and M. Herrb, “Lessons Learned from the Deployment of a High-
Interactiion Honeypot”, in Sixth European Dependable Computing Conference (EDCC-6), (Coimbra, Portugal), pp.39-44,
IEEE Computer Society, 2006

260

