Resilience: an Essential Property for the Sustainability of Computing Systems and Infrastructures

- From Dependability to Resilience -

Jean-Claude Laprie

ReSIST Summer School

Resilience in Computing Systems and Information Infrastructures — from Concepts to Practice —

24th-28th September 2007, Porquerolles

Dependability

Basic concepts

[From A. Avizienis, JC. Laprie, B. Randell, C. Landwehr, 'Basic Concepts and Taxonomy of Dependable and Secure Computing', IEEE Tr. Dependable and Secure Computing, 2004]

State-of-the-art from statistics

Resilience

Definition and technologies

continuously evolving (complex) systems

Dependability: ability to deliver service that can justifiably be trusted

Service delivered by a system: its behavior as it is perceived by its user(s) User: another system that interacts with the former

Function of a system: what the system is intended to do

(Functional) Specification: description of the system function

Correct service: when the delivered service implements the system function

(Service) Failure: event that occurs when the delivered service deviates from correct service, either because the system does not comply with the specification, or because the specification did not adequately describe its function

Failure modes: the ways in which a system can fail, ranked according to failure severities

Part of system state that may cause a subsequent service failure: error Adjudged or hypothesized cause of an error: fault

Dependability: ability to avoid failures that are unacceptably frequent or severe

Failures are more frequent or more severe than acceptable: dependability failure

3

Dependability attributes

- Availability, Reliability, Safety, Confidentiality, Integrity, Maintainability: Primary attributes
- Secondary attributes
 - Specialization
 - Robustness: dependability with respect to external faults
 - Survivability: dependability in the presence of active fault(s)
 - > Distinguishing among various types of (meta-)information
 - Accountability: availability and integrity of the person who performed an operation
 - Authenticity: integrity of a message content and origin, and possibly some other information, such as the time of emission
 - Non-repudiability: availability and integrity of the identity of the sender of a message (non-repudiation of the origin), or of the receiver (non-repudiation of reception)

Dependability definitions

- Original definition: ability to deliver service that can justifiably be trusted
 - Enables to generalize availability, reliability, safety, confidentiality, integrity, maintainability, that are then attributes of dependability
- Alternate definition: ability to avoid service failures that are unacceptably frequent or severe
 - A system can, and usually does, fail. Is it however still dependable? When does it become undependable?

criterion for deciding whether or not, in spite of service failures, a system is still to be regarded as dependable

- Dependence of system A on system B is the extent to which system A's dependability is (or would be) affected by that of system B
- Trust: accepted dependence

Explicitly Implicitly

Dependability and similar notions

Concept	Dependability	High Confidence	Survivability	Trustworthiness
Goal	 ability to deliver service that can justifiably be trusted ability of a system to avoid service failures that are unacceptably frequent or severe 	consequences of the system behavior are well understood and predictable	capability of a system to fulfill its mission in a timely manner	assurance that a system will perform as expected
Threats present	 development faults (e.g., software flaws, hardware errata, malicious logic) physical faults (e.g., production defects, physical deterioration) interaction faults (e.g., physical interference, input mistakes, attacks, including viruses, worms, intrusions) 	 internal and external threats naturally occurring hazards and malicious attacks from a sophisticated and well- funded adversary 	 attacks (e.g., intrusions, probes, denials of service) failures (internally generated events due to, e.g., software design errors, hardware degradation, human errors, corrupted data) accidents (externally generated events such as natural disasters) 	 hostile attacks (from hackers or insiders) environmental disruptions (accidental disruptions, either man- made or natural) human and operator errors (e.g., software flaws, mistakes by human operators)
Reference	1	'Information technology frontiers for a new millenium', Blue Book 2000, NTSC	A. Ellison et al., 'Survivable network systems', SEI Report, 1999	F. Schneider, ed., 'Trust in cyberspace', National Academy Press, 1999

	F	ault	ts	Fail	ures	s		it
	Physical	Development	Interaction	Localized	Distributed	Availability Reliability	Safety	Confidential
June 1980: False alerts at the North American Air Defense (NORAD)	~			~		~		
April 1981: First launch of the Space Shuttle postponed		~		~		~		
June 1985 - January 1987: Excessive radiotherapy doses (Therac-25)		~		~			~	
August 1986 - 1987: the "wily hacker" penetrates several tens of sensitive computing facilities		~	~	~				~
November 1988: Internet worm		~	~		~	~		
15 January 1990: 9 hours outage of the long-distance phone in the USA		~			~	~		
February 1991: Scud missed by a Patriot (Dhahran, Gulf War)		~	~	~		~	V	
November 1992: Crash of the communication system of the London ambulance service		~	~		~	~	~	
26 and 27 June 1993: Authorization denial of credit card operations in France	~	~			~	~		
4 June 1996: Failure of Ariane 5 maiden flight		~		~		~		
13 April 1998: Crash of the AT&T data network		~	~		~	~		
February 2000: Distributed denials of service on large Web sites		~	~		~	~		
May 2000: Virus <i>I love you</i>		~	~		~	~		
July 2001: Worm Code Red		~	~		~	~		
August 2003: Propagation of the electricity blackout in the USA and Canada		~	~		~	~		
October 2006: 83,000 e-mail addresses, credit card info, banking transaction		~	~		~			~

			Energy		2,8		
			Manufac	cturing	1,6		
		Industry sector Insurance		al institutions	1,4	Millions of \$	
				ce	1,2	lost	IT
			Retail		1,1		
			Banking		1		
* Yearly cost	of failures						
Estimate	es of insurance	companie	es (2000)	France (priva	te sector) USA	UK
	Acciden	tal faults		0,9 G	€	4 G\$	
	Maliciou	s faults		l 1 G€	Ē		1,25 G£
	Global estimate)		USA : 8	0 G\$	UE : 6	0 G€
🔆 Maintenanc	costs						
•	Space shuttl	e on-boar	d softwa	re: 100 M \$ /	an		
R\$							
IST Cost of soft	ware project o	cancellat	ion (failu	re of the dev	elopme	nt process)	
🐼 🛠 Cost of soft	ware project (Group 20	ion (failu	re of the dev Success	elopme Cha	nt process) llenaed	Cancelled
জ্জ 🛠 Cost of soft জ্জ	Ware project o USA [Standish 13522 projects	Group, 20	ion (failu 02,	re of the dev Success 34%	elopme Cha	nt process) llenged 51%	Cancelled
Cost of soft	Ware project (USA [Standish 13522 projects	Group, 20	ion (failu 02,	re of the dev Success 34%	elopme Cha 5 oss ~ 38	nt process) llenged 51% G\$ (out of tot	Cancelled 15% al 225 G\$)
Cost of soft	Ware project (USA [Standish 13522 projects	Group, 20	ion (failu 02,	re of the dev Success 34% Ic Estimate 1988	elopme Cha 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	nt process) llenged 51% G\$ (out of tot nate 1994	Cancelled 15% al 225 G\$) Timing shift (estimate 1994)

Т	hree	large	web	osites	S [from D.	Oppenheimer,	A. Ganapa	thi, D.A.	Patterson,	ʻWhy
do	Interne	et servic	es fail	, and w	hat can be	e done about it	?', USISTS	'03]		

Website		<i>Online</i> (mature)	<i>Readmostly</i> (mature)	Content (bleeding edge)	
	Hits per day	~100 million	~100 million	~7 million	
	# of machines	~500, 2 sites	>2000, 4 sites	~500, ~15 sites	
	Front-end node architecture	Solaris on SPARC and x86	Open-source OS on x86	Open-source OS on x86	
Service characteristic	Back-end node architecture	Network Appliance filters	Open-source OS on x86	Open-source OS on x86	
	Period of data stud.	7 months	6 months	3 months	
	Component failures	296	N/A	205	
	Service failures	40	21	56	
	MTTF	126 hours	206 hours	39 hours	
	Front-end	77%	0%	66%	
Service failure	Back-end	3%	10%	11%	
location	Network	18%	81%	18%	
	Unknown	2%	9%	4%	
Average TTR	Front-end	9.4 (16 serv. fai.)	N/A	2.5 (10 serv. fai.)	
by part of	Back-end	7.3 (5 serv. fai.)	0.2 (1 serv. fai.)	14 (3 serv. fai.)	
service (hrs)	Network	7.8 (4 serv. fai.)	1.2 (16 serv. fai.)	1.2 (2 serv. fai.)	
Average availat	pility	93.5%	97.2%	97.8%	

Malicious faults

Slammer/Sapphire worm

[From: http://www.caida.org/publications/papers/2003/sapphire/sapphire.html]

The fastest computer worm in history. As it began spreading throughout the Internet, it doubled in size every 8.5 seconds. It infected more than 90 percent of vulnerable hosts within 10 minutes. The worm began to infect hosts slightly before 05:30 UTC on Saturday, January 25, 2003. Sapphire exploited a buffer overflow vulnerability in computers on the Internet running Microsoft's SQL Server or MSDE 2000 (Microsoft SQL Server Desktop Engine). This weakness in an underlying indexing service was discovered in July 2002; Microsoft released a patch for the vulnerability before it was announced. The worm infected at least 75,000 hosts, perhaps considerably more, and caused network outages and such unforeseen consequences as canceled airline flights, interference with elections, and ATM failures.

The geographic spread of Sapphire in the 30 minutes after release. The diameter of each circle is a function of the logarithm of the number of infected machines, so large circles visually underrepresent the number of infected cases in order to minimize overlap with adjacent locations.

Yearly survey on computer damages in France — CLUSIF (2000, 2001, 2002)

In computing systems

- Resilient
 - In use for 30+ years
 - > Recently, escalating use \rightarrow buzzword
 - Used essentially as synonym to fault tolerant
 - Noteworthy exception: preface of *Resilient Computing Systems*, T. Anderson (Ed.), Collins, 1985

"A *resilient* computing system is capable of providing dependable service to its users over a wide range of potentially adverse circumstances. The two key attributes here are dependability and robustness. [...] A computing system can be said to be *robust* if it retains its ability to deliver service in conditions which are beyond its normal domain of operation, whether due to harsh treatment, or unreasonable service requests, or misoperation, or the impact of faults, or lack of maintenance »

- Fault-tolerant computing systems are known for exhibiting some robustness with respect to fault and error handling, in the above sense, i.e., for situations exceeding their specification, e.g.:
 - Tolerance of elusive software faults thanks to loosely-coupled architectures in Tandem systems
 - Tolerance errors that escaped detection and thus did not trigger recovery in Delta-4
- This of course should not lead to forget that, contrariwise, total coverage with respect to specified faults is hardly achievable

31

Moving to ubiquitous systems

Large, networked, evolving systems constituting complex information infrastructures — perhaps involving everything from super-computers and huge server farms to myriads of small mobile computers and tiny embedded devices

functional environmental technological

Examples of changes:

- Dynamically changing systems, e.g., spontaneous, or 'ad-hoc', networks of mobile nodes and sensors
- Growth of systems as demand increases
- Interactions between systems of differing natures, e.g., large-scale information infrastructure on the one hand and networks of sensors on the other
- Merging of systems, e.g., in company acquisitions, or coupling of systems, e.g., in military coalitions
- Ever-evolving and growing problem of attacks both by amateur hackers and by professional criminals

