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Outline

Initial Discussions

● Trust and trustworthiness
● When a system dependable? How does machine learning affect all of this?

Overview of ML systems and definitions

● Fairness
● Accountability
● Transparency, and
● Interpretability
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Joint Work

Atmosphere’s WP6 Team

● Leandro Balby (UFCG)
● Vasiliki Diamantopoulou (UPRC)
● Wagner Meira (UFMG)
● + others
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Trust and Trustworthiness
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Simplified Background

● Mathematically speaking, what is the goal of a supervised learning system?

● The goal is to learn some parameters

● Where these parameters maximize some prediction function across y

This is just one view. Optimization v. Bayesian and other topics out of the scope. 5



Simplified Background

● The goal of a supervised learning algorithm is to discriminate
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Simplified Background

● The goal of a supervised learning algorithm is to discriminate 
● Why are we now so worried that it does? It seems we can trust them.
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Machine Bias

● Pro Publica analysis of COMPAS (which stands for Correctional Offender 
Management Profiling for Alternative Sanctions)
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing 
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What is trust?

● Inspired by Onora O'Neill
https://www.youtube.com/watch?v=XWwTYy9k5nc 

● Consider a question? Do we trust politicians?
○ This question has had the same answer for a long time
○ People usually don’t trust politicians
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What is trustworthiness?

● Inspired by Onora O'Neill
https://www.youtube.com/watch?v=XWwTYy9k5nc 

● Consider a question? Do we trust politicians?
○ This question has had the same answer for a long time
○ People usually don’t trust politicians

● Trustworthiness
○ Evidence of why can I trust you
○ Evidence is observable (though hard to quantify): competence, reliability
○ We trust a science not because it came from a scientist, it is testable

● We need to direct our trust to trustworthy properties.
○ Why and when can I trust
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Services need to earn 
trust. They need to be 
trustworthy 

11



Trustworthiness changes 
over time
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Dependability
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Dependability

From Wikipedia

However, over time these properties get more complex.
ML systems currently impact society.
It is interesting that it mentions: trust over time
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It’s a hard problem

● Uptime. Do we want more or less of it?
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It’s a hard problem

● Uptime. Do we want more or less of it?
● Probably more, there are clear problems that require more uptime.
● Maybe cost and energy are issues, but they are quantifiable issues
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It’s a hard problem

● Fairness. Do we want more or less of it?
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It’s a hard problem

● Fairness. Do we want more or less of it?
● Name one problem solved by machine learning fairness?
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It’s a hard problem

● Fairness. Do we want more or less of it?
● Name one problem solved by machine learning fairness?
● What is fairness?!
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It’s a hard problem

● Fairness. Do we want more or less of it?
● Name one problem solved by machine learning fairness?
● What is fairness?!

Let’s try and help

● On a credit scoring system that helps one decide loans to give out. Do we want 
more fairness?
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It’s a hard problem

● Fairness. Do we want more or less of it?
● Name one problem solved by machine learning fairness?
● What is fairness?!

Let’s try and help

● On a credit scoring system that helps one decide loans to give out. Do we want 
more fairness?

● What if the system simply denies all loans?
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Machine Learning Systems

● Need to specify their trustworthiness
○ Fairness
○ Transparency
○ Accountability
○ Interpretability

● I can’t even trust the definition of fairness

https://fairmlclass.github.io
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It is a human problem

Nitin Koli, Joshua Kroll (NeuRIPS, 2018)

● Issues of fairness, transparency, accountability, transparency and interpretability 
are social-technological

“Technologies don’t live in a vacuum and if we pretend that they do we kind of have put our 
blinders on and decided to ignore any human problems.”
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Dependability

From the Working Group
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Dependability

● Assumes that the human negatively impacts system dependability
● We are now learning that with machine learning systems it’s the other way around
● Systems now negatively impact social structures
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Dependability

● Assumes that the human negatively impacts system dependability
● We are now learning that with machine learning systems it’s the other way around
● Systems now negatively impact social structures
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The old arms race

● W can tackle these problems as an arms race
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Social Technological

● Computer Science
● Data Science
● Law
● Health
● Politics

etc.

https://vimeo.com/149389876
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FAT*
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What is Fairness?

Let’s begin with fairness as it closely relates to all other metrics.
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21 fairness definitions and their politics

Arvind Narayanan - FAT Conference 2018 Tutorial

● Computer Scientist on a wild goose chase for a single definition
● There is value to various definitions
● Each can lead to trustworthiness
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What is Fairness?
Sahil Verma and Julia Rubin (2018) -- Fairness Definitions Explained

● A lot of these metrics worry about some
form of equality

● Let S be some subset of sensitive attributes.
S = { col(j, X) | column j is sensitive }
N = { col(i, X) | column i is not-sensitive }
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Balanced Representation
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Is this fairness?
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Parity in Predictions
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Some Examples

● Demographic Parity

● Equality in Opportunity (FNR)

● Calibration
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No free Lunch
Arvind Narayanan - FAT Conference 2018 Tutorial
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Feedback Loops and Utility

How safe do we want a city to be?
It can be shown thresholding this score, leads to unfairness.
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Drawbacks

● We are mostly focused on correlations
● Maybe that nice matrix is impossible
● We are reducing a processes to measures
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Free Software Approach to Transparency

● The source code is public and auditable

39



A Lazy ML Approach to Transparency

● I employed a simple model, thus it is easy to understand
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Interpretability

Lime and Shap. Also limited, ML to explain ML.
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Accountability

From Wikipedia: 

“In ethics and governance, accountability is answerability, blameworthiness, liability, 
and the expectation of account-giving.”
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General Data Protection Regulation

Also the California Consumer Privacy Act

● Big companies need to be accountable when using your data
● However, impacts exist even when I agree to share my data

○ Let’s say most of the population agrees to share data with Facebook

● Who is accountable?
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Accountability

● How do we measure accountability?
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Accountability

● How do we measure accountability?
● Machines can keep track of records (data provenance)
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Accountability

● What do we do with it?
● Conflicts with Privacy
● Hot topic in ML nowadays. Is it our job to make others accountable?
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Drawbacks

● We are mostly focused on correlations
● We are reducing a processes to measures

● Kroll et al. (2018). When is an election fair (or transparent, accountable)?
An election is a process. The whole process should be accountable, transparent 
and subject to recounts.

47



Counterfactuals

● Evaluates the impact of features with counterfactual approach
[Zhang and Bareinboim (2018)]

● “Would the prediction change if  the subject were black?” 
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Causal Analysis

https://pair-code.github.io/what-if-tool/ 

1. For a given subject
2. Find the closest point with a different prediction and different sensitive attribute
3. Swap features keeping the sensitive attribute
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Causal Fairness

The COMPASS model. S captures race. N1 demography. N2 prior convictions.
Zhang and Bareinboim (2018) -- Equality of Opportunity in Classification
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Each of these classifiers have the same equalized odds.
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✔

● Step in the right direction
● Human in the loop (provides the DAG asks the question)
● One step closer to a process.

However

● We are not lawmakers or sociologists
● We still need to educate and get educated
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Limitations

Different machine learning tasks
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Limitations

Different machine learning tasks
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Dependable Systems

● We should not view humans as the cause of problems
● Shift in direction for dependability
● Processes not only measures

○ Systems should enable humans to take actions
○ Open data/model provenance
○ Explanations

○ Systems should enable humans to say no
○ I do not want to see certain content. Do not use my data

○ Systems should be trustworthy in ways the average user can understand
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Hard Problem

Society (as a consequence datasets) is unfair
Accountability is difficult (who do we blame?)
Datasets and models are hard to understand
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Thank You!
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