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Cyber-Physical Systems [CPS]
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Design Challenges

Limited Resources
- Computational power, energy, cost

Timing Requirement
- Safety, reliability, deadlines

System Upgrade
- Verifiability



CPS Constraints

u Many CPS have real-time constraints
“requires both, logical correctness as well as temporal correctness”

u Temporal correctness defined as a constraint: deadline

u Deadlines determine usefulness of results
u deadline passes → usefulness drops

u Use well-defined scheduling algorithms 

u E.g.: Anti-lock Braking System (ABS) in modern automobiles

u must function correctly in milliseconds time-frame

u even 1 second might be too late 

(e.g.: a car traveling at 60 mph has travelled 88 ft. in 1s!)
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Understanding timing behavior is critical January 24, 2019
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CPS SECURITY

Physically isolated

Specialized protocols & hardware

Not connected to the internet

Limited capabilities

Finite (often severely constrained) 
resources

Attacks on Industrial Control Systems 
[Stuxnet!]

Hijacking of automotive systems

Vulnerabilities in implantable 
(and other) medical devices

Vulnerable avionics systems

Power grids & other utilities

[?]

First, we need to understand vulnerabilities in CPS



Today’s Talk

u Challenges to Resiliency of Cyber-Physical Systems (CPS)
u How to leak critical information from CPS with real-time constraints and 

u Use that information to break the CPS

u Integrate mechanisms to detect adversarial actions
u And still maintain the integrity of the CPS
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[RTSS 2016, ECRTS 2017, DATE 2018, RTAS 2019]



Outline u ScheduLeak: methods to leak schedule information
u Contego: Integrate security & maintain real-time requirements
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ScheduLeak
u Exfiltration of Critical Information

u Reconnaissance
“given knowledge of the scheduling algorithms 
used in the system, can we recreate its exact 
timing schedule?”
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Adversary model & Assumptions

u Reconnaissance è important step in many security attacks [e.g. Stuxnet]

u Ability to intrude into the system undetected

u Motivation: steal information about system operation/modes/timing information/etc.
u User space activities à as much as possible

u Vendor-based system design:

January 24, 2019
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Attack Scenario Overview
10

There is some schedule (on the victim system)

Attack!The attacker can then launch a major attack 
at a future instant that can cause the most 
amount of damage
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Inferring arrivals of a “victim” taskThe adversary observes and analyzes the 
schedule and reconstructs precise timing 
information



Adversary Model [contd.]

u Assumption: Fixed-Priority Real-Time Systems [E.g. RM]
Attacker’s task (observer task)
Victim task 
Other tasks

u Requirements
u The attacker knows the victim task’s period
u The observer task has lower priority than the victim task

u Attack Goals
u Predict the victim task’s future arrival points in time

11

periodic or sporadic

periodic

periodic or sporadic
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Real-Time Tasks
u Periodic

u Jobs released 
periodically

u Relative deadlines

u Sporadic

u Release/arrival times 
specified

u Inter-arrival times

u Absolute deadlines

worst-case execution times
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Observer Task (!")

Organize the execution intervals
in a “schedule ladder” diagram

Analyze and extract

Take union of the execution intervals

2

Reconstruct execution intervals of Victim Task (!#) Observe and reconstruct
1

Sc
he

d
uL

e
a

k
A

tt
a

ck

Infer the victim task’s initial offset

Predict the victim task’s future arrivals
Infer and predict

3

[RTAS 2019] Chen et al., A Novel Side-Channel in Real-Time Schedulers.
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ScheduLeak Algorithms

Observer Task !" Other Tasks

Task ID Period
Exec 
Time

Observer Task 15 1

Task 2 10 2

Victim Task (!#) 8 2

Task 4 6 1

Observer task 
has lower 

priority than 
victim task
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ScheduLeak Algorithms

Reconstruct execution intervals of !"
1

Observer Task !# Other Tasks

Task ID Period
Exec 
Time

Observer Task 15 1

Task 2 10 2

Victim Task (!") 8 2

Task 4 6 1
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ScheduLeak Algorithms

Reconstruct execution intervals of !"
1

Observer Task !# Other Tasks

Task ID Period
Exec 
Time

Observer Task 15 1

Task 2 10 2

Victim Task (!") 8 2

Task 4 6 1

System Schedule Ground Truth:
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ScheduLeak Algorithms

Reconstruct execution intervals of !"
1

Observer Task !# Other Tasks

System Schedule Ground Truth:

Some tasks preempted the observer task

What the attacker can observe 

Execution Intervals Reconstructed by the Observer Task:

Task ID Period
Exec 
Time

Observer Task 15 1

Task 2 10 2

Victim Task (!") 8 2

Task 4 6 1
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ScheduLeak Algorithms

Organize the execution intervals
in a “schedule ladder diagram”

2

!

Task ID Period
Exec 
Time

Observer Task 15 1

Task 2 10 2

Victim Task ("#) 8 2

Task 4 6 1
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ScheduLeak Algorithms

Organize the execution intervals
in a “schedule ladder diagram”

2

!

! + 0

! + $

! + %&

…! + '(

Place the intervals in a ladder diagram
(width equals the victim task’s period)

Still dealing with 
the Observer 

task executions

Task ID Period
Exec 
Time

Observer Task 15 1

Task 2 10 2

Victim Task ()*) 8 2

Task 4 6 1
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ScheduLeak Algorithms

Organize the execution intervals
in a “schedule ladder diagram”

2

! + 0

! + 8

! + 16

…! + 24

Task ID Period
Exec 
Time

Observer Task 15 1

Task 2 10 2

Victim Task ()*) 8 2

Task 4 6 1



January 24, 2019Sibin Mohan | Timing-Infused Resiliency for CPS

20
ScheduLeak Algorithms

Organize the execution intervals
in a “schedule ladder diagram”

2

Take union of the execution intervals

! + 0

! + 8

! + 16

…! + 24

! + 0

! + 8

! + 16

…! + 24

Task ID Period
Exec 
Time

Observer Task 15 1

Task 2 10 2

Victim Task ()*) 8 2

Task 4 6 1
No observer task OR 
any other lower 
priority task here
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ScheduLeak Algorithms

Infer the victim task’s initial offset
3

! ! + 8

Task ID Period
Exec 
Time

Observer Task 15 1

Task 2 10 2

Victim Task ($%) 8 2

Task 4 6 1
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ScheduLeak Algorithms

Infer the victim task’s initial offset
3

! ! + 8

Tasks with lower priorities
(e.g. observer task) cannot
appear in this column!

Task ID Period
Exec 
Time

Observer Task 15 1

Task 2 10 2

Victim Task ($%) 8 2

Task 4 6 1
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ScheduLeak Algorithms

Infer the victim task’s initial offset
3

! ! + 8

Tasks with lower priorities
(e.g. observer task) cannot
appear in this column!

We take the starting point of the empty column as
the inference of the victim task’s initial offset.

$%&

Task ID Period
Exec 
Time

Observer Task 15 1

Task 2 10 2

Victim Task ('&) 8 2

Task 4 6 1
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ScheduLeak Algorithms

Infer the victim task’s initial offset
3

! ! + 8

$%&

Predict the victim task’s future arrivals

Task ID Period
Exec 
Time

Observer Task 15 1

Task 2 10 2

Victim Task ('&) 8 2

Task 4 6 1
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ScheduLeak Algorithms

Infer the victim task’s initial offset
3

! ! + 8

$%&

Predict the victim task’s future arrivals

The victim task’s future arrival times can be computed by

! + $%& + '& + (

Task ID Period
Exec 
Time

Observer Task 15 1

Task 2 10 2

Victim Task ()&) 8 2

Task 4 6 1
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ScheduLeak Algorithms

Infer the victim task’s initial offset
3

! ! + 8

$%&

Predict the victim task’s future arrivals

The victim task’s future arrival times can be computed by

! + $%& + '& + (

ladder diagram 
starting point

Inferred victim task’s
Initial offset

victim task’s period desired arrival number

Can predict, with high precision, arrival times of victim!

Task ID Period
Exec 
Time

Observer Task 15 1

Task 2 10 2

Victim Task ()&) 8 2

Task 4 6 1
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Success rate and precision ratio 
are stabilized after 5 " #$%('(, '*)
• Success rate:     97%
• Precision ratio:  0.99

Note
1. Each data point represents the mean of 12000 tasksets for the given observation duration
2. Inference Success Rate: an inference is successful if attacker is able to exactly infer the victim task’s initial offset
3. Inference Precision Ratio: the ratio of how close the inference to the true initial offset

Experimental Results
Duration of Observations
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What can we do with 
information gleaned 
using ScheduLeak?

28



Demonstration 1
Cache-Timing Side-Channel Attack

u UAV that flies across several locations
u High resolution pictures of points of interest

u Low resolution otherwise

u Image processing task
u Victim task
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Cache timing Attack model

u Timing attacks

“attacker attempts to steal the information from the system by analyzing time variation of a function”

u Well known in security and system literature

u Steal cryptographic keys, snooping in cloud computing, etc.

30

Application

Attacker 1. Attacker fills the cache

2. Let application use cache

3. Attacker measures cache-
miss and cache-hit ratio to 
gauge the cache usage

January 24, 2019



Demonstration 1
Cache-Timing Side-Channel Attack

u Attack Goals: 
u Probe (coarse-grained) memory usage of victim task

u Recover locations of interest à points where memory usage (of victim task) is high

January 24, 2019Sibin Mohan | Timing-Infused Resiliency for CPS

31

Measurements on Xilinx Zedboard Zynq-
7000, FreeRTOS, [CPU Freq: 666MHz, L2 

Cache: 512KB, 32 byte line size]

Low-res mode

High-res mode

!"#$ %&'(!)&*+ &, )*!$"$+!



Demonstration 1
Cache-Timing Side-Channel Attack

u Without ScheduLeak–based information

u Attackers are forced to randomly sample the system

u To detect memory usage changes

32

!"#$ %&'(!)&*+ &, )*!$"$+!
Cache usage probes are indistinguishable



Demonstration 1
Cache-Timing Side-Channel Attack

u With precise timing information from ScheduLeak

u Attackers can launch cache-timing attack at more precise points

u Very close to the execution of the victim task

33

Four locations are recovered from the cache usage probes



Demonstration 2
Interference with Control (Actuation Signals) of CPS

u Autonomous rover/drone that has ESC/servos

u Control throttle and steering

u PWM control task (victim) updates PWM values periodically

u Attack goals:

u Interleave PWM signals to override control of throttle/steering

u Cause system to crash or worse, take over control!

January 24, 
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Demonstration 2
Interference with Control (Actuation Signals) of CPS
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ScheduLeak Demo



ScheduLeak Summary

u Reconnaissance attack algorithms

u Targeting sporadic and mixed real-time CPS

u Stealthy and Effective

u No root privileges required for ScheduLeak 

37

Inferred arrivals of the victim 
task.

Attac
k!

More videos [including cache attack demo]: https://scheduleak.github.io



Contego
u Integration of Security in Real-Time CPS

u For legacy as well as future systems

“if we are to integrate any (arbitrary) security 
mechanism/application, can it be done without 
perturbing the timing guarantees of the CPS?”
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Integrating Security into Legacy CPS

u Integration into Legacy Real-Time Systems (RTS):

u Requires major modification of system/task parameters

u run-times, period, task execution order, etc. 

u Security mechanisms need to:

u co-exist with the real-time tasks

u operate without impacting timing & safety constraints of control logic

Sibin Mohan | Timing-Infused Resiliency for CPS
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NOT feasible



Integrating Security Tasks
Requirements

u How to integrate security tasks 
u without perturbing real-time tasks most of the time?

u How to determine the frequency of the security tasks?
u improve responsiveness of security mechanisms?

January 24, 2019Sibin Mohan | Timing-Infused Resiliency for CPS
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Examples of Security Tasks [from Linux]
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Security Tasks Function

Check own binary 
[Tripwire]

Scan files in the following locations: /usr/sbin/siggen, 
/usr/sbin/tripwire, /usr/sbin/twadmin, /usr/sbin/twprint

Check critical executables
[Tripwire]

Scan file-system binary (/bin, /sbin)

Monitor network traffic 
[Bro]

Scan predefined network interface(en0)

January 24, 2019



Performance Criteria

1. Frequency of Monitoring: if monitoring interval is

u too large

u too short

Sibin Mohan | Timing-Infused Resiliency for CPS
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è delays detection of adversary

è impacts schedulability of real-time tasks



Performance Criteria [contd.]

2. Responsiveness: when a security breach is suspected: 

u security routine may be required to switch to more active role

u more fine-grained checking

u restart/reload from trusted copy

u graceful degradation

u cleanup tasks

u raise alarms

u etc.

Sibin Mohan | Timing-Infused Resiliency for CPS
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Proposed Approach: Overview

u Add additional fixed-priority sporadic security tasks

u Any one of protection, detection or response mechanisms

u Example: Tripwire, Bro, OSSEC, etc.

Sibin Mohan | Timing-Infused Resiliency for CPS
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Initial Approach

u Ensure security without perturbing real-time scheduling order
u Execute security tasks as lowest priority tasks 

u Slower response times è from security/monitoring perspective

Sibin Mohan | Timing-Infused Resiliency for CPS
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Can we do better?

[RTSS 2016] Hasan et al., Exploring opportunistic execution for integrating security into legacy hard real-time systems.

[RTSS 2016]



Contego

u Allow security tasks to run in two modes:

u PASSIVE

u ACTIVE

January 24, 2019Sibin Mohan | Timing-Infused Resiliency for CPS
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[ECRTS 2017]



Contego

u Allow security tasks to run in two modes:

u PASSIVE

o Execute opportunistically with lowest priority

u ACTIVE

o Switch to other (active) mechanisms if abnormality is detected

January 24, 2019Sibin Mohan | Timing-Infused Resiliency for CPS

47



Contego Example
48

RT Task 1

RT Task 2
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Contego Example
49

RT Task 1

RT Task 2

Security Task 1
(PASSIVE Mode)

Security Task 2
(ACTIVE Mode)

January 24, 2019Sibin Mohan | Timing-Infused Resiliency for CPS



Contego Example
50

RT Task 1

RT Task 2

Security Task 1
(PASSIVE Mode)

Security Task 2
(ACTIVE Mode)

1. PASSIVE Mode: Security 
Task Execute with lowest 
priority)

Schedule 
(PASSIVE)

Time

.…..

January 24, 2019Sibin Mohan | Timing-Infused Resiliency for CPS



Contego Example
51

RT Task 1

RT Task 2

Security Task 1
(PASSIVE Mode)

Security Task 2
(ACTIVE Mode)

1. PASSIVE Mode: Security 
Task Execute with lowest 
priority)

Schedule 
(PASSIVE)

Time

.…..

2. Anomaly detected, 
Perform additional checks
(Switch to ACTIVE Mode)
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Contego Example
52

RT Task 1

RT Task 2

Security Task 1
(PASSIVE Mode)

Security Task 2
(ACTIVE Mode)

1. PASSIVE Mode: Security 
Task Execute with lowest 
priority)

Schedule 
(PASSIVE)

Time

.…..

2. Anomaly detected, 
Perform additional checks
(Switch to ACTIVE Mode)

3. ACTIVE Mode: Security Tasks Execute with 
higher priority than RT Task 2

January 24, 2019



Contego Example
53

RT Task 1

RT Task 2

Security Task 1
(PASSIVE Mode)

Security Task 2
(ACTIVE Mode)

1. PASSIVE Mode: Security 
Task Execute with lowest 
priority)

Schedule 
(PASSIVE)

Time

.…..

2. Anomaly detected, 
Perform additional checks
(Switch to ACTIVE Mode)

3. ACTIVE Mode: Security Tasks Execute with 
higher priority than RT Task 2

……..

4. Find everything normal or timeout
(Switch back to PASSIVE Mode)



System Model

u Fixed-priority uniprocessor system

u Implicit deadlines

u Follows Rate Monotonic order

u ‘m’ Real-time tasks à ‘m’ distinct priority-levels

u Security tasks are characterized by

u No specific assumptions about the security tasks in both modes

u May contain completely different tasks 

u or (partially) identical tasks with different parameters

January 24, 2019Sibin Mohan | Timing-Infused Resiliency for CPS
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System Model [contd.]

u PASSIVE mode:

u Security tasks are executed with lower priority than the real-time tasks

u ACTIVE mode:

u Security tasks can execute in any priority-level between 

u Recall ‘m’: number of real-time priorities

u ‘ls’: upper limit for priorities of active security tasks

January 24, 2019Sibin Mohan | Timing-Infused Resiliency for CPS
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Problem Description

u Metric: Tightness of achievable periodic monitoring

u Any period within                              is acceptable 

u Actual period is unknown (for PASSIVE and ACTIVE modes)

u Priority levels are unknown (For ACTIVE mode)

January 24, 2019Sibin Mohan | Timing-Infused Resiliency for CPS
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Solution
Constrained Optimization Problem [ECRTS 2017]

u Formulate as a constrained optimization problem

For PASSIVE mode:

Maximize Tightness subject to:
a. The system is schedulable

b. Security tasks periods > real-time task periods

c. Security tasks’ periods are within acceptable bound

57

[ECRTS 2017] Hassan et al. Contego: An Adaptive Framework for Integrating Security Tasks in Real-Time Systems.

M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba 23:7

that denotes the tightness of the frequency of periodic monitoring for the security task τi.
Thus ηpa =

∑

τi∈Γpa
S

ωiηi and ηac =
∑

τi∈Γac
S

ωiηi denote the cumulative tightness of the achiev-

able periodic monitoring for PASSIVE and ACTIVE mode, respectively. This monitoring
frequency metric, provides for instance, one way to trade-off security with schedulability.
Recall that if the interval between consecutive monitoring events is too large, the adversary
may remain undetected and harm the system between two invocations of the security task.
Again, a very frequent execution of security tasks may impact the schedulability of the real-
time tasks. This metric η(·) will allow us to execute the security routines with a frequency
closer to the desired one while respecting the temporal constraints of the other real-time
tasks.

3.1 Problem Overview
One may wonder why we cannot schedule the security tasks in the same way that the existing
real-time tasks are scheduled. For instance, a simple approach to integrating security tasks
in PASSIVE mode without perturbing real-time scheduling order is to execute security tasks
at a lower priority than all real-time tasks. Hence, the security routines will be executing
only during slack times when no other higher-priority real-time tasks are running. Likewise,
in ACTIVE mode, security tasks can be executed at a lower priority than more critical,
high-priority real-time tasks. Hence, the security tasks will only be executing when other
real-time tasks with priority-levels higher than lS are not running.

When both real-time and security tasks follow RM priority order, we can formulate
a nonlinear optimization problem for PASSIVE mode with the following constraints that
maximizes the cumulative tightness of the frequency of periodic monitoring:

(P1) max
Tpa

ηpa

Subject to:
∑

τi∈Γpa
S

Ci

Ti
≤ (m + np)(2

1
m+np − 1) −

∑

τj∈ΓR

Cj

Tj
(3a)

Ti ≥ max
τj∈ΓR

Tj ∀τi ∈ Γpa
S (3b)

T des
i ≤ Ti ≤ T max

i ∀τi ∈ Γpa
S (3c)

where Tpa = [T1, T2, · · · , Tnp ]T is the optimization variable for PASSIVE mode that needs
to be determined. The constraint in Eq. (3a) ensures that the utilization of the security
tasks are within the remaining RM utilization bound [28]. The RM priority order for real-
time and security tasks is ensured by the constraints in Eq. (3b), while Eq. (3c) ensures the
restrictions on periodic monitoring.

Recall that in ACTIVE mode, we allow the security tasks to execute when the real-time
tasks with priority-levels higher than lS are not running. Hence, to ensure the RM priority
order in ACTIVE mode, we need to modify the constraints in Eq. (3b) as follows:

Ti ≥ max
τj∈ΓRhp(lS )

Tj , ∀τi ∈ Γac
S (4)

where ΓRhp(lS ) represents the set of real-time tasks that are higher priority than level lS .
In addition, the constraints in Eq. (3a) and Eq. (3c) also need to be updated to consider
ACTIVE mode task-sets (e.g., Γac

S ) and the number of active mode security tasks (na).
Thus for ACTIVE mode we can formulate an optimization problem similar to that of P1
with the objective function: max

Tac
ηac, where Tac = [T1, T2, · · · , Tna ]T is the ACTIVE mode

optimization variable.
One of the limitations of the above approach is that the overall system utilization is

limited by the RM bound which has the theoretical upper bound of processor utilization

ECRTS 2017



u Formulate as a constrained optimization problem

For ACTIVE mode (given a priority-level, ls):

Maximize Tightness subject to:
a. The system is schedulable

b. Satisfy execution order of higher-priority RT tasks

c. Security tasks’ periods are within acceptable bound

58
Solution
Constrained Optimization Problem [ECRTS 2017]

[ECRTS 2017] Hassan et al. Contego: An Adaptive Framework for Integrating Security Tasks in Real-Time Systems.

M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba 23:7

that denotes the tightness of the frequency of periodic monitoring for the security task τi.
Thus ηpa =

∑

τi∈Γpa
S

ωiηi and ηac =
∑

τi∈Γac
S

ωiηi denote the cumulative tightness of the achiev-

able periodic monitoring for PASSIVE and ACTIVE mode, respectively. This monitoring
frequency metric, provides for instance, one way to trade-off security with schedulability.
Recall that if the interval between consecutive monitoring events is too large, the adversary
may remain undetected and harm the system between two invocations of the security task.
Again, a very frequent execution of security tasks may impact the schedulability of the real-
time tasks. This metric η(·) will allow us to execute the security routines with a frequency
closer to the desired one while respecting the temporal constraints of the other real-time
tasks.

3.1 Problem Overview
One may wonder why we cannot schedule the security tasks in the same way that the existing
real-time tasks are scheduled. For instance, a simple approach to integrating security tasks
in PASSIVE mode without perturbing real-time scheduling order is to execute security tasks
at a lower priority than all real-time tasks. Hence, the security routines will be executing
only during slack times when no other higher-priority real-time tasks are running. Likewise,
in ACTIVE mode, security tasks can be executed at a lower priority than more critical,
high-priority real-time tasks. Hence, the security tasks will only be executing when other
real-time tasks with priority-levels higher than lS are not running.

When both real-time and security tasks follow RM priority order, we can formulate
a nonlinear optimization problem for PASSIVE mode with the following constraints that
maximizes the cumulative tightness of the frequency of periodic monitoring:

(P1) max
Tpa

ηpa

Subject to:
∑

τi∈Γpa
S

Ci

Ti
≤ (m + np)(2

1
m+np − 1) −

∑

τj∈ΓR

Cj

Tj
(3a)

Ti ≥ max
τj∈ΓR

Tj ∀τi ∈ Γpa
S (3b)

T des
i ≤ Ti ≤ T max

i ∀τi ∈ Γpa
S (3c)

where Tpa = [T1, T2, · · · , Tnp ]T is the optimization variable for PASSIVE mode that needs
to be determined. The constraint in Eq. (3a) ensures that the utilization of the security
tasks are within the remaining RM utilization bound [28]. The RM priority order for real-
time and security tasks is ensured by the constraints in Eq. (3b), while Eq. (3c) ensures the
restrictions on periodic monitoring.

Recall that in ACTIVE mode, we allow the security tasks to execute when the real-time
tasks with priority-levels higher than lS are not running. Hence, to ensure the RM priority
order in ACTIVE mode, we need to modify the constraints in Eq. (3b) as follows:

Ti ≥ max
τj∈ΓRhp(lS )

Tj , ∀τi ∈ Γac
S (4)

where ΓRhp(lS ) represents the set of real-time tasks that are higher priority than level lS .
In addition, the constraints in Eq. (3a) and Eq. (3c) also need to be updated to consider
ACTIVE mode task-sets (e.g., Γac

S ) and the number of active mode security tasks (na).
Thus for ACTIVE mode we can formulate an optimization problem similar to that of P1
with the objective function: max

Tac
ηac, where Tac = [T1, T2, · · · , Tna ]T is the ACTIVE mode

optimization variable.
One of the limitations of the above approach is that the overall system utilization is

limited by the RM bound which has the theoretical upper bound of processor utilization

ECRTS 2017



Limitations and Solution

u Non-linear constraint optimization problem

u Formulation limited by Rate Monotonic bound (69% Utilization)

u Requires analysis on a per-task basis

u Transformed into non-convex Geometric Programming (GP) 

u Reformulate the non-convex GP to equivalent convex form

u Solve using known algorithms (Interior Point method)
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[ECRTS 2017] Hassan et al. Contego: An Adaptive Framework for Integrating Security Tasks in Real-Time Systems.



Evaluation on Embedded Platform

u Experiment with Security applications
u Platform: 1 GHz ARM Cortex A8, 512 MB RAM 

u OS: Linux with Xenomai real-time patch
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Real-Time Tasks [UAV] Function Period (ms)

Guidance Select reference trajectory (altitude & heading) 1000

Controller Execute closed-loop control functions 5000

Reconnaissance Read radar/camera data, collect sensitive information, send 
data to base control station

10000



Evaluation on Embedded Platform

u Experiment with Security applications
u Platform: 1 GHz ARM Cortex A8, 512 MB RAM 

u OS: Linux with Xenomai real-time patch

u Security applications: Tripwire, Bro

61

Security Tasks Function Mode

Check own binary 
(Tripwire)

Scan files in the following locations: /usr/sbin/siggen, /usr/sbin/tripwire, 
/usr/sbin/twadmin, /usr/sbin/twprint

ACTIVE

Check critical executables
(Tripwire)

Scan binaries in the file-system (/bin, /sbin) ACTIVE and 
PASSIVE

Check Critical libraries
(Tripwire)

Scan libraries in the file system (/lib) ACTIVE

Monitor network traffic (Bro) Scan predefined network interface (en0) ACTIVE and 
PASSIVE



Evaluation on Embedded Platform

u Experiment with Security applications
u Platform: 1 GHz ARM Cortex A8, 512 MB RAM 

u OS: Linux with Xenomai real-time patch

u Security applications: Tripwire, Bro

u Attack demonstration:
u Compromise a real-time task

u Perform network-level DoS attack 

u Also inject shellcodes that modify file-system binary (/bin)

62
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Impact on Detection Time
63
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[RTSS ‘16] Hasan et al., Exploring opportunistic execution for 
integrating security into legacy hard real-time systems, RTSS, 2016

Contego detects attacks 
27.29% faster than 
previous scheme



Tightness of Monitoring

u 5000 synthetic task-sets

u Total utilization of Security Tasks: < 30% of the real-time tasks

u ls upper bounded by 0.4m
January 24, 2019
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Figure 2 PASSIVE mode vs. ACTIVE mode:
difference in cumulative tightness of achievable
periodic monitoring, ηav − ηpa. Non-zero dif-
ference indicates that the ACTIVE mode tasks
achieve better tightness than PASSIVE mode
tasks. Task-sets from different base-utilization
groups are represented by different colors. Each of
the data points represents schedulable task-sets.

The figure shows that ACTIVE mode
tasks can achieve better cumulative tight-
ness, and that the cumulative tightness ηpa

is comparatively better in low to medium
utilization. The main reason is that in
ACTIVE mode security tasks are allowed
to execute with higher priority, that causes
less interference and eventually increases
the feasible region in the optimization prob-
lems (and hence provides better tightness).
For higher utilizations the difference is close
to zero. This is because, as utilization in-
creases there is less slack in the system,
making it difficult to schedule security tasks
frequently and resulting in similar levels of
tightness for both modes.

6.1.2.2 Effectiveness of Security

The parameter η(·) is given by the total
number of security tasks and provides in-
sights on cumulative measures of security.
However, in this experiment (refer to Fig. 3)
we wanted to measure the effectiveness of the security of the system by observing whether
each of the security tasks in any mode can achieve an execution frequency closer to the
desired one. Hence we used the following metric: ξ = 1 − ∥T∗−Tdes∥2

∥Tmax−Tdes∥2
where T∗ is the

solution obtained from Algorithm 1, Tdes = [T des
i ]T∀τi

and Tmax = [T max
i ]T∀τi

are the de-
sired and maximum period vector (refer to Section 6.1.1), respectively, and ∥·∥2 denotes the
Euclidean norm. The closer the value of ξ to 1, the nearer each of the security task’s period
is to the desired period.
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Figure 3 The effectiveness of security vs. total
utilization of the system. The closer the y-axis
values to 1, the nearer each security task’s period
is to the desired period. Task-sets from different
base-utilization groups are distinguished by differ-
ent colors.

As the total utilization increases, the
feasible set of the period adaptation prob-
lem that respects all constraints in the op-
timization problems becomes more restrict-
ive. As a result, we see the degradation in
effectiveness (in terms of ξ) for the task-
sets with higher utilization. However, from
our experiments we find that Contego can
achieve periods that are within 18% of the
desired periods.

6.1.2.3 Impact on the Schedulability

We used the acceptance ratio metric to eval-
uate schedulability. The acceptance ratio
(y-axis in Fig. 4) is defined as the number of
accepted task-sets (e.g., the task-sets that
satisfied all the constraints) over the total
number of generated ones. As depicted in
Fig. 4 the ACTIVE mode task-set achieves
better schedulability compared to the PASS-
IVE ones. Recall that ACTIVE mode task-

sets can be promoted up to priority level lS . As a result ACTIVE mode security tasks

X-axis: System Utilization

Y-axis: Difference between tightness

[active mode and passive mode]
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Figure 2 PASSIVE mode vs. ACTIVE mode:
difference in cumulative tightness of achievable
periodic monitoring, ηav − ηpa. Non-zero dif-
ference indicates that the ACTIVE mode tasks
achieve better tightness than PASSIVE mode
tasks. Task-sets from different base-utilization
groups are represented by different colors. Each of
the data points represents schedulable task-sets.

The figure shows that ACTIVE mode
tasks can achieve better cumulative tight-
ness, and that the cumulative tightness ηpa

is comparatively better in low to medium
utilization. The main reason is that in
ACTIVE mode security tasks are allowed
to execute with higher priority, that causes
less interference and eventually increases
the feasible region in the optimization prob-
lems (and hence provides better tightness).
For higher utilizations the difference is close
to zero. This is because, as utilization in-
creases there is less slack in the system,
making it difficult to schedule security tasks
frequently and resulting in similar levels of
tightness for both modes.

6.1.2.2 Effectiveness of Security

The parameter η(·) is given by the total
number of security tasks and provides in-
sights on cumulative measures of security.
However, in this experiment (refer to Fig. 3)
we wanted to measure the effectiveness of the security of the system by observing whether
each of the security tasks in any mode can achieve an execution frequency closer to the
desired one. Hence we used the following metric: ξ = 1 − ∥T∗−Tdes∥2

∥Tmax−Tdes∥2
where T∗ is the

solution obtained from Algorithm 1, Tdes = [T des
i ]T∀τi

and Tmax = [T max
i ]T∀τi

are the de-
sired and maximum period vector (refer to Section 6.1.1), respectively, and ∥·∥2 denotes the
Euclidean norm. The closer the value of ξ to 1, the nearer each of the security task’s period
is to the desired period.
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Figure 3 The effectiveness of security vs. total
utilization of the system. The closer the y-axis
values to 1, the nearer each security task’s period
is to the desired period. Task-sets from different
base-utilization groups are distinguished by differ-
ent colors.

As the total utilization increases, the
feasible set of the period adaptation prob-
lem that respects all constraints in the op-
timization problems becomes more restrict-
ive. As a result, we see the degradation in
effectiveness (in terms of ξ) for the task-
sets with higher utilization. However, from
our experiments we find that Contego can
achieve periods that are within 18% of the
desired periods.

6.1.2.3 Impact on the Schedulability

We used the acceptance ratio metric to eval-
uate schedulability. The acceptance ratio
(y-axis in Fig. 4) is defined as the number of
accepted task-sets (e.g., the task-sets that
satisfied all the constraints) over the total
number of generated ones. As depicted in
Fig. 4 the ACTIVE mode task-set achieves
better schedulability compared to the PASS-
IVE ones. Recall that ACTIVE mode task-

sets can be promoted up to priority level lS . As a result ACTIVE mode security tasks

Active mode tasks achieve 
much better tightness than 
passive mode tasks



Contego Summary

u An adaptive approach to integrate security tasks into RTS

u Careful period selection and behavior-based mode switching

u Improve responsiveness of security mechanisms

u Retain (most) real-time guarantees

u Framework for integrating security methods
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Security integration that maintains resiliency of real-time CPS
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…
u Research that explores the resiliency of cyber-physical systems

u From both perspectives:
u How to weaken/break resiliency  [ScheduLeak]

u How to strengthen it [Contego and other work]

Designers of CPS have a better understanding of requirements



Thanks! u http://sibin-research.blogspot.com

u https://scheduleak.github.io
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