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Edge cases matter
 Robust perception matters

The heavy tail distribution
 Fixing stuff you see in testing

isn’t enough

Perception stress testing
 Finding the weaknesses in 

perception

Overview

[General Motors]
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NREC: 30+ Years Of Cool Robots

Software
Safety
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98% Solved For 20+ Years
Washington DC to San Diego
 CMU Navlab 5
 Dean Pomerleau
 Todd Jochem

https://www.cs.cmu.edu/~tjochem/nhaa/nhaa_home_page.html

AHS San Diego demo Aug 1997

July
1995
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Validating an Autonomous Vehicle Pipeline

Control
Systems

 Control
Software
Validation

Doer/Checker
Architecture

Autonomy
Interface To

Vehicle

 Traditional
Software
Validation

Perception presents a uniquely difficult assurance challenge

Randomized
& Heuristic
Algorithms

Run-Time
Safety Envelopes
Doer/Checker

Architecture 

Machine
Learning

Based
Approaches

 ???
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Validation Via Brute Force Road Testing?
 If 100M miles/critical mishap…
 Test 3x–10x longer than mishap rate 
 Need 1 Billion miles of testing

That’s ~25 round trips
on every road in the world
 With fewer than 10 critical mishaps
…
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Good for identifying “easy” cases
 Expensive and potentially dangerous

Brute Force AV Validation: Public Road Testing

http://bit.ly/2toadfa
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 Safer, but expensive
 Not scalable
 Only tests things you have thought of!

Closed Course Testing

Volvo / Motor Trend
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Highly scalable; less expensive
 Scalable; need to manage fidelity vs. cost
 Only tests things you have thought of!

Simulation

http://bit.ly/2K5pQCN

Udacity http://bit.ly/2toFdeT

Apollo
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You should expect the
extreme, weird, unusual
 Unusual road obstacles
 Extreme weather
 Strange behaviors

Edge Case are surprises
 You won’t see these in testing

 Edge cases are the stuff you didn’t think of!

What About Edge Cases?

https://www.clarifai.com/demo

http://bit.ly/2In4rzj
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Unusual road obstacles & obstacles
 Extreme weather
 Strange behaviors

Just A Few Edge Cases

http://bit.ly/2top1KD

http://bit.ly/2tvCCPK

https://dailym.ai/2K7kNS8

https://en.wikipedia.org/wiki/Magic_Roundabout_(Swindon)

https://goo.gl/J3SSyu
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Where will you be after 1 Billion miles of validation testing?

Assume 1 Million miles between unsafe “surprises”
 Example #1:   

100 “surprises” @ 100M miles / surprise
– All surprises seen about 10 times during testing
– With luck, all bugs are fixed

 Example #2:   
100,000 “surprises” @ 100B miles / surprise
– Only 1% of surprises seen during 1B mile testing
– Bug fixes give no real improvement (1.01M miles / surprise)

Why Edge Cases Matter

https://goo.gl/3dzguf
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The Real World: Heavy Tail Distribution(?)

Common Things
Seen In Testing

Edge Cases
Not Seen In Testing

(Heavy Tail Distribution)
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The Heavy Tail Testing Ceiling
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Need to collect surprises
 Novel objects
 Novel operational conditions

Corner Cases vs. Edge Cases
 Corner cases: infrequent combinations

– Not all corner cases are edge cases
 Edge cases: combinations that behave unexpectedly

 Issue: novel for person ≠ novel for Machine Learning
 ML can have “edges” in unexpected places
 ML might train on features that seem irrelevant to people

Edge Cases Part 1: Triggering Event Zoo

https://goo.gl/Ni9HhU Not A Pedestrian
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A scalable way to test & train on Edge Cases

What We’re Learning With Hologram

Your fleet and       
your data lake

Hologram 
cluster tests 

your CNN

Hologram 
cluster 

identifies 
weaknesses

& helps retrain 
your CNN

Your CNN 
becomes 

more robust
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Edge Cases Part 2: Brittleness

https://goo.gl/5sKnZV

QuocNet:

Car Not a
Car

Magnified
Difference Bus

Not a
Bus

Magnified
Difference

AlexNet:

Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 (2013).

Malicious Image Attacks Reveal Brittleness:

https://goo.gl/ZB5s4Q
(NYU Back Door Training)
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 Sensor data corruption experiments

ML Is Brittle To Environment Changes

Synthetic Equipment Faults

Gaussian blur

Exploring the response of a DNN to environmental
perturbations from “Robustness Testing for
Perception Systems,” RIOT Project, NREC,  DIST-A.

Defocus & haze are
a significant issue

Gaussian Blur &
Gaussian Noise cause

similar failures
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Noise Susceptibility

LaneNet
Original

LaneNet
With
Gaussian 
Noise

Lane detection is not robust to small image changes.
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False positive on lane marking
False negative real bicyclist

False negative when
in front of dark vehicle

False negative when
person next to light pole

Context-Dependent Perception Failures
Perception failures are often context-dependent
 False positives and false negatives are both a problem

Will this pass a “vision test” for bicyclists?
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Mask-R CNN: examples of clusters we found

Example Triggering Events via Hologram

“Red objects”

Notes: These are baseline, un-augmented images.
(Your mileage may vary on your own trained neural network.)

“Columns”

“Camouflage”

“Sun glare”

“Bare legs”

“Children”

“Single Lane Control”
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More safety transparency
 Independent safety assessments
 Industry collaboration on safety

Minimum performance standards
 Share data on scenarios and obstacles
 Safety for on-road testing (driver & vehicle)

 Autonomy software safety standards
 Traditional software safety … PLUS …
 Dealing with surprises and brittleness
 Data collection and feedback on field failures

Ways To Improve AV Safety

http://bit.ly/2MTbT8F (sign modified)

Mars

Thanks!
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