Challenges, current solutions and research directions regarding assured autonomy

Paulo Esteves-Veríssimo Univ. of Luxembourg, FSTC / SnT

paulo.verissimo@uni.lu http://staff.uni.lu/paulo.verissimo

CritiX Lab (Critical and Extreme Security and Dependability)

Panel at 75th IFIP WG10.4 workshop Champéry, CH Jan 2019.

11019181016

Perspective taken on assurance

- Statements that explicitly define the dependability and security expectations about a system (a set of properties)
- Provides justification that the user trust meets system trustworthiness, through assurance evidence and approvals based on evidence
- System mechanisms designed and implemented to meet the requirements (enforce the properties)

Autonomous vehicles vs. traditional

Autonomous Vehicles: no longer mechanical nor isolated

AMPLIFIED THREAT SURFACE !

Case for a holistic approach: Individualistic cars will worsen safety

Autonomous vehicle ecosystem threat plane perhaps wider than many think

Autonomous vehicle ecosystem threat plane perhaps wider than many think

Towards Safe and Secure Autonomous and Cooperative Vehicle Ecosystems. Lima, A; Rocha, F; Volp, M; Verissimo, P. in Proc's 2nd ACM Workshop on Cyber-Physical Systems Security and Privacy (2016, October) @CCS, Vienna-Austria

Contributions to certification mindset change (I)

Code-size gap in vehicle ecosystems

Faults in a well designed car may imply a **nonnegligible** probability of catastrophic failure

S-Vehicles

Privacy (2016, October) @CCS, Vienna-Austria

Perspective taken on assurance: how does the scenario change it

- Statements that explicitly define the dependability and security expectations about a system (a set of properties)
- Provides justification that the user trust meets system trustworthiness, through assurance evidence and approvals based on evidence
- System mechanisms designed and implemented to meet the requirements (enforce the properties)

Perspective taken on assurance: weakening the trust-trustworthiness link

- Statements that explicitly define the dependability and security expectations about a system (a set of properties)
- Provides justification that the user trust meets system trustworthiness, through assurance evidence and approvals based on evidence
- System mechanisms designed and implemented to meet the requirements (enforce the properties)

Perspective taken on assurance: bringing trustworthiness back high up

- Statements that explicitly define the dependability and security expectations about a system (a set of properties)
- Provides justification that the user trust meets system trustworthiness, through assurance evidence and approvals based on evidence
- System mechanisms designed and implemented to meet the requirements (enforce the properties)

Contributions to certification mindset change (II)

Divide-and-conquer I: Hybrid models and architectures Leveraging power at right place right time

Divide-and-conquer I: Hybrid models and architectures Leveraging power at right place right time

Leveraging trusted-trustworthy components (aka TEE) with the right set of simple functions (failure detectors, monotonic counters, reliable timers and clocks, PRG, signatures, indelible logs, binary cons.

