
Attacking Smart Contracts
And some mitigation approaches …..

Dr. habil. Radu State
Radu.state@uni.lu

http://wwwfr.uni.lu/snt/research/sedan

• Master of Science, Johns Hopkins University, USA
(Computational Biology), 1998

• Ph.D, INRIA, France (Network Security and
Management), 2001

• Habilitation, Université de Lorraine, France, 2008
• Senior Researcher at INRIA, France
• Professor of Computer Science, Telecom Nancy,

France
• Senior Scientist at SnT, University of Luxembourg

Radu State

Research at SEDAN@SnT on Smart Contracts

• Can we model complex financial processes with smart
contracts ?
• How can we analyze deployed smart contracts ?
• AML usage
• Eco-environment insights ?

• Can we predict activities for smart contracts ?

• Can we secure deployed smart contracts
• Without changing the consensus algorithm

Overview

• Smart contracts and blockchain 101
• Programming frameworks and deployment
• Security
• Network level protection with SDN
• Software level defense against vulnerabilities

• Different viewpoints for looking at smart contracts
• Graph modeling
• Language modeling

Nick Szabo’s definition from 1994

• “A smart contract is a computerized transaction protocol that
executes the terms of a contract.
• The general objectives are to satisfy common contractual conditions
(such as payment terms, liens, confidentiality, and even enforcement),
minimize exceptions both malicious and accidental, and minimize the
need for trusted intermediaries.
• Related economic goals include lowering fraud loss, arbitrations and
enforcement costs, and other transaction costs”

What is consensus and why do we need blockchain(s)?

• State Machine and transactions

• Trust by distributed and
decentralized computing

• Consensus should deal with
• Failures
• Censorship

Permissioned
Non Permissioned DL

Encoding state on the blockchain

• the stateless UTXO model,
account balances are encoded
into past transaction records

• account model, where account
balances are kept in state
storage space on the ledger.

What do you need to write a smart contract ?

• A programming language in which to write your code (Go/Solidity)
• A compiler which translates a smart contract into bytecode
• A virtual machine that executes the smart contract
• A trusted infrastructure which executes the virtual machine

Writing a smart contract in Golang (HyperLedger)

• A simple program that receives three input numbers a, b, x and
updates with a=a-x and b=b+x
• Example: If a=10, b=7, x=4 then after the execution we get: a=6, b=11
• In Python this looks like:

1. a=input('Enter first number: ')
2. b =input('Enter second number: ')
3. x=input('Enter third number: ')
4. new_a=a-x
5. new_b=b+x
6. print('The status of {0} and {1} is {4} and {5} '.format(a, b, new_a,new_b))

Initializing the chain…..

1. a=input('Enter first number: ')
2. b =input('Enter second number: ')

Initializing the chain…..

Writing data to the blockchain

Doing two arithmetic operations…

Reading data from the blockchain

Doing two arithmetic operations…

new_a=a-x
new_b=b+x

print('The status of {0} and {1} is {4} and {5} '.format(a, b, new_a,new_b))

Calling a function ….

And starting the chain ….

Additional code not shown but complete example can be found at
https://github.com/IBM-
Blockchain/example02/blob/v2.0/chaincode/chaincode_example02.go

And code in Solidity (Ethereum)
pragma solidity ^0.4.18;
contract addition {

address creator;
uint a;
uint b;
uint c;

function addition() public
{

creator = msg.sender;
// msg is a global variable

uint c = uint a + uint b;
}

function addition() constant returns (uint)
{

return uint c;
}

/**********
Standard kill() function to recover funds
**********/

function kill()
{

if (msg.sender == creator)
suicide(creator); // kills this contract and sends

remaining funds back to creator
}

}

Real Security Threats to Blockchain systems

• Understand the real attacker motivations which are not necessary
inspired from IEEE S&P papers J

• Why should we run complex BGP hijacking, timing attacks against the
block transmission protocol with only some mining fee as a reward ?
• One single documented BitCoin attack using BGP leading to 80000 USD loss

(2014)

• Attackers want money, fast and with minimum investment…..

• So, let’s see how to steal real money from the blockchain !!

• What happened?
– Crowdfunding smart contract on Ethereum
– Raised over $150m from 11,000 users (15th

May 2016)
– Attacker drained $60m to a “child DAO”

exploiting a “re-entrancy” bug and a “call to
the unknown” (18th June 2016)

• What were the consequences?
– Price of Ether dropped from over $20 to

under $13
– First a soft-fork, then a hard-fork, which finally

led to a split:

Why software attacks are a better ROI then BGP
hijacking ?

4

What do you need to run an
attack ?
A computer Internet and
basic programming skills…. !

Smart contract calling another contract

4

How to deposit 75 ether and withdraw 150 !!

4

The same but now with fewer calls…

5

ICO 101
Standards: ERC20, ERC721

Types: Securities token, Utility tokens

Best Practice Documents

Implemented over Ethereum –mostly
Ctrl-C Ctrl-V coding

Provide liquidity where is needed
without to much regulatory overhead

How much money is there for an attacker ?

The end of year result? An estimated $4.9 billion
was raised through ICOs in 2017, around the same
amount reported by the Wall Street Journal in mid-
December of last year.

https://www.wsj.com/articles/initial-coin-offerings-surge-past-4-billionand-regulators-are-worried-1513235196

What is the current status -as of June 25 th?

• Takes solidity code or EVM bytecode as input
• Uses Oyente to construct control flow graph (CFG)
• Symbolically executes every instruction in the CFG, following a depth first search

manner
• Constructs constraints for every arithmetic instruction (taking current path

constraints into account)
• Evaluates constraints using Z3

• Reports a bug if constraints are satisfiable

• Uses taint analysis to reduce number of false positives
• Lead developer, Christof Torres (SEDAN@SNT)
• Joint work with Fraunhofer
• Funding provided by BCEE (Luxembourg)

OSIRIS

11

• Decentralized Application Security Project

• An initiative of NCC Group

• Open and collaborative project

• Similar to OWASP Top 10 but for
smart contracts

• Arithmetic bugs are amongst the Top 3

DASP TOP 10 (dasp.co)

6

Symbolic
Analysis

Taint Analysis

Integer Error
Detection

Z3 Bit-Vector Solver

Bytecode/Solidity

OSIRIS

13

• Osiris successfully detects all the vulnerabilities listed below

DETECTING KNOWN VULNERABILITIES

• Interesting vulnerability allowing you to create many tokens for t he ICO

ANALYSING TOP TOKENS

• We downloaded 495 top token smart contracts as per market capital on
Etherscan.io

• Osiris discovered an unknown vulnerability in a couple of them

17

• In ”traditional”
security disclosure
you know whom to
contact and inform
about the
vulnerability

• Blockchain protects
the anonymity….so
whom to contact ?

Responsible disclosure …..

BLURRED to protect it

BLURRED to protect it

ANALYSING THE WHOLE BLOCKCHAIN

• We analyzed 1.2 million contracts, from August 7, 2015 to January 30, 2018

• 42,108 contracts are vulnerable to integer bugs

• Osiris takes 75 seconds to analyze a contract, with a median of 13 seconds and
a mode of 1 second

• Osiris achieves a code coverage of 88% on average

18

41379

2738
405

14107

1401 235

A RI T H M E T I C T RUNCA T I ON S I G NE D NE S S

All contracts Unique contracts

DISTRIBUTION OF INTEGER BUGS

19

23473

11479
10335

1292

10520

6103

29 350

OV E RF LOW UND E RF LOW M OD ULO D I V I S I ON

All contracts Unique contracts

DISTRIBUTION OF ARITHMETIC BUGS

20

• Integrate Osiris in Remix (Web GUI)

• Analyze more than 90.000 ERC-20 based token smart contracts

• Use concolic execution to directly verify bugs and automatically generate
exploits

Existing improvements to be released

22

Protecting Smart Contracts – Blockchain Defender

• Protect the network and service platform by taking into

account the consenus….

• Flexible Software Defined Network component for the

InfraChain project

• OpenSource Code development

• Support for multiple permissioned blockchains

• Multichain, Hyperledger

• No modification of blockchain nodes and no censoring

• Use blockchain nodes as they are

SDN network and components

Controller components

Controller components

Lists

System Setup

Authorized User

Authorized User

Unauthorized User

