Fast Transaction Commit in
Sharded Data Stores™

Gregory Chockler Alexey Gotsman

Royal Holloway, IMDEA Software
University of London Institute

*Submitted to DISC’18



ACM Symposium on Principles of Distributed Computing
July 23 — 27, 2018, Royal Holloway, University of London, Egham, United Kingdom

¥ “g gy, ) v bt A s # un) o o= J | N ¥ &
gt F RSN RN P O S T
.A '.""/ 4 - =2 NN .‘" - o 7 = BUTRTS vies ﬁ j(
- & { § ¥ 5 24 D S .

The ACM Symposium on Principles of Distributed Computing (PODC), is a premier
international conference on the theory, design, analysis, implementation and application of
distributed systems and networks. It will be held this year at Royal Holloway, University of
London. In addition to three days of cutting-edge conference research paper presentations,
it will feature two full days dedicated to the following workshop topics:

« Biological distributed algorithms « Blockchain technology and theory
» Social issues in online social networks <« Large-scale distributed systems and
» Theory and practice for integrated middleware
cloud, fog and edge computing » Tools/languages/platforms for
paradigms distributed system evaluation

For more information and online registration: www.podc.org




-
-
)
U

_
:

v

s

| -

_”?

.
.
e 5

~ e T

A T b
€

i1 I
3%
14

.,._‘5“'
pag
-
°F.
ok

—
ity

N

A,
\\

g

]
| 8
~gt

> ""-'%_a o
- ~»
- -
e
',}:

—
-
P
o
: '1‘4‘: T v
-

LI

\ 2
. <X L g h“

- -

b Al " o
.'A "“" s
e







No More




Modern Data Stores

ACID
Consistent

Survivable



Modern Data Stores

Q Clustrix

Google Cloud T Cockroach ps

Spanner

Sigriite
Y \ .
vo LT DB 0?. Azure Cosmos DB




Blockchain

* Transactional semantics and fault-
tolerance are non-negotiable

* Proof-of-Work (PoW): slow

— Mining rate bounded by

block propagation and validation delays et h ereum

« Committee Consensus (PBFT)

/"> HYPERLEDGER
— Fast but bandwidth bound N



Scaling Blockchains

* Hybrid blockchains

— PoW to elect and maintain a committee
— Algorand, etc.

* Permissioned blockchains
— Separate tx execution, ordering and state
— Delegate ordering to the committee

e How to scale the committee?



Horizontal Scaling

* Data sharding and replication

Store 3

@ Store 2
Store 4 »l-i‘

=
.
. -
N

RS W SIS WLV|e

10



Replicated Sharded Data Store




f
|
|
|
|
\

-

partition 1
replica 1

partition 1
replica 2

partition 2
replica 1

partition 2
replica 2

partition p
replica 1

partition p

Site 1

replica 2

Site 2

Abstract View

partition 1
replica n

partition 2
replica n

partition p
replica n

Site n

- e o o=

Agrawal, El Abbadi, Salem, A Taxonomy of Partitioned Replicated Cloud-Based Database Systems



Sharded Transactional Store

Full ACID semantics for transactions
Transactions can span multiple shards

Servers should only process transactions
involving the shards they store

Unlimited concurrency

Up to f servers can fail in every shard

13



How to commit a transaction?

In a sharded (partitioned) datastore
Touching objects in multiple shards
Assuming reliable shards (for now)
ACID guarantees

14



How to commit a transaction?

 Two-Phase Commit (2PC)

— Coordinate distributed decision

* Concurrency control (CC)

— Ensure a suitable isolation level

15



How to commit a transaction?

* Traditionally studied in isolation
* |n reality, tightly intertwined

e We introduce a unified framework that
captures both

16



Reliable Shards

Client B C A
tx.read(A) |
tx.read(C :
- (©) — . Execution
— . phase
' Buffer Writes :
Certify(tx.RS, tx.WS)
>
( __Certification
phase

Shard B Shard C Shard A 17



Reliable Shards

—

Client B C A
tx.read(A) |
tx.read(C) N
Buffer Writes
/ Transaction Certification Service (TCS) \ o
Certify(tx.RS, tx.WS)
=D
Decide(tx,
< .
Commit | Abort)

—

Execution
phase

Certification
phase

18



Optimistic Concurrency Control (OCC)

* Reads can be served in any order by any
replica
* Writes are buffered (“deferred”)

e Certification requests carry read-set and
write-set

19



Certification Functions

e Models conflict checks

* Determines if a transaction should COMMIT or
ABORT given its context (prior committed
transactions)

Serializability: f(T,t) = commIT iff

Vr,v.(z,v) € R(t) = (V' €eT.(z, ) e W) = V.(t') <v).

20



Multi-Shot Transaction Commit

* Certify(tx), Decide(tx, COMMIT | ABORT)

* Correctness: CF-consistent linearization of
committed Certify requests

Certify(t5) A
Certify(t1) C ° °
Certify(t4) A
Certify(t3) A
Certify(t6) ' C
o ®
Certify(t2) C
. 3 . CF({t1, t2}, t6) = COMMIT

21



Problem Statement

* Implement a resilient TCS with a given CF
— < f servers can fail in every shard
— Transactions can span multiple shards

— Servers must only process transactions involving
the shards they store

— Unlimited concurrency

— Eventual synchrony (or eventual leader)

22



Our Contribution

Family of resilient cross-shard TCS protocols

Crash fault-tolerant (CFT): 2f+1 replicas/group
— Optimal latency, unbounded pipelining

Byzantine fault-tolerant (BFT): 3f+1 replica/group
— Latency matching PBFT, unbounded pipelining
— First of a kind?

Formal framework for multi-shot transaction commit

23



Setting

Client A B C A B C A BC
tx.read(A)
tx.read(C :

- (€) . Execution
— . phase
' Buffer Writes :

/ Transaction Certification Service (TCS) \
Certify(tx.RS, tx.WS)
N
l __Certification
<Decide(tx, phase
Commit | Abort) K j

Site 1 Site 2 Site 3 24



“Black-box” Solution

* Two-Phase Commit (2PC) to coordinate cross-
shard transaction commit

* Paxos in every replica group

— Ordered transaction log for concurrency control

— 2PC state for each transaction
(prepared/committed/aborted)

 Examples: Spanner, Scatter, Granola, etc.



“Black-Box”: Failure-Free Case

. Coordinator Leader Follower
Client
1
® > —
)
3 L Agree on the
< 4 ﬂ' ¢ group vote
5 _
< —e >
6 —
e
Agree on the
4_7__. . final outcome
(COMMIT or
8 ABORT)

Replica group



“Black-Box”: Failure-Free Case

Client Coordinator Shard
Leader Follower Leader Follower
PREPARE
o >
o » Agree on the
shard vote
¢ ®
PREPARE__ACK
<4+ ' ®
» Persist the outcome
< (COMMIT or ABORT)
DECISION DECISION
1 i » Propagate the
b » oOutcome




Goals

 Eliminate black-box abstractions

* Design single coherent protocol

* |dentify optimization opportunities
— For failure-free case



Recipe

* Abstract protocol to solve multi-shot
transaction commit with reliable shards

e Refine to obtain a resilient solution for a
desired failure model

— CFT or BFT

29



6

Abstract Multi-Shot 2PC

function certify(t)

7 L send PREPARE(t) to proc(shards(t));

8
9
10
11

12
13

14
15

16

17
18
19

when received PREPARE(t)

next <— next + 1;

txn[next] « t;

vote[next] < fs, ({txnlk] | £ < nextAphaselk| = DECIDED Adec|k| = COMMIT}, t) I
gs, ({txn[k] | k < nextAphase[k] = PREPAREDAvote[k] = COMMIT}, t);

phase[next] - PREPARED;

send PREPARE_ ACK(sg, next, t, vote[next]) to coord(t);

when received PREPARE_ACK(s, pos,,t,ds) for every s € shards(t)
L send DECTSTON(t, [1,cqarasr) ds) to client(t);

forall s € shards(¢) do send DECISION(pos, [ |5csparas() @s) tO proc(s);

when received DECISION(k,d)

dec[k] + d;
phase|k| < DECIDED;



CFT Protocol Overview

* Maintain a contiguous prefix of the vote history
(certification order) in every replica group

* Leaders can compute votes locally and persist at a
majority through a consensus round

— No need in 2" consensus to persist the decision!

 Coordinator is stateless
— Can learn of the votes directly from replicas
— Can also drive a new decision without risking conflicts

31



CFT Protocol: Failure-Free Case

. Coordinator Leader Follower
Client
1 \
» -
Compute
vote
2 Agree on the prefix
$——> of the vote history
3 | Respond directly to
< the coordinator
4 .
<« | > o Respond to the client
and propagate the
decision

Replica group



BFT Protocol Overview

Reduce to a single consensus via certification
order agreement in every replica group

Extra message delay to verify the leader’s vote

— Vote computation verification to prevent spurious
aborts

Many-to-many exchange pattern for independent
verification

Failure-free latency is the same as PBFT

33



Failure-Free Case Latency

CFT BFT
”Black-box” TCS 5 (client) N/A
protocols 8 (decision)
Our TCS 4 (client) 5 (client and decision)
protocols 4 (decision)

* Match latency of consensus

 Known to be optimal for CFT
— Collocated coordinator and client

— Use many-to-many exchange instead of leader-based
protocol




Future Work

e Study complexity for different sharding
strategies

e Support pessimistic concurrency control

* TCS BFT protocol for blockchain scaling
— E.g., cross-channel transactions in Hyperledger



Consistent

Scalable Survivable

Thank You!

36



