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Modern	Data	Stores
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Modern	Data	Stores
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Blockchain
• Transactional	semantics	and	fault-
tolerance are	non-negotiable

• Proof-of-Work	(PoW):	slow
– Mining	rate	bounded	by	
block	propagation	and	validation	delays

• Committee	Consensus	(PBFT)
– Fast but	bandwidth	bound
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Scaling	Blockchains

• Hybrid blockchains
– PoW to	elect	and	maintain	a	committee
– Algorand,	etc.

• Permissioned blockchains
– Separate	tx execution,	ordering and	state
– Delegate	ordering	to	the	committee

• How	to	scale	the	committee?
9



Horizontal	Scaling

• Data	sharding and	replication
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Replicated	Sharded Data	Store
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Abstract	View
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Figure 1: A Replicated Partitioned Database

more and more servers. Replication stores multiple copies of a partition on different servers. If the replicas are
distributed across multiple data centers, they can provide fault-tolerance even in the presence of catastrophic
failures, such as earthquakes or hurricanes. Such replication is often referred to as geo-replication.

Many modern database systems operate over partitioned, replicated databases, and they use a variety of
different techniques to provide transactional guarantees. Our objective in this paper is to present a simple
taxonomy of such systems, which focuses on how they implement transactions. By doing so, we hope to provide
a framework for understanding the growing space of scalable and highly available database systems. Of course,
these database systems differ from each other in many ways. For example, they may support different kinds of
database schemas and provide different languages for expressing queries and updates. They also target a variety
of different settings, e.g., some systems geo-replicate so as to survive catastrophes, while others are designed to
scale out within a single machine room or data center. We will ignore these distinctions as much as possible,
thus allowing the development of a simple taxonomy that focuses on transaction mechanisms.

2 Replicated Partitioned Databases

We begin with an abstract model of a distributed, replicated transactional database system. This model will
provide a common context for the subsequent presentation of the taxonomy. We assume that the system stores a
large database. To allow the system to scale up, the database is divided into p non-overlapping partitions, so that
each partition can be managed by a separate server. Partitioning is accomplished in different ways in different
systems, but we will not be concerned here with the way that the partitions are defined.

For the sake of availability, each partition of the database is replicated n times. As shown in Figure 1, each
complete copy of the database is referred to as a site. Because there are n complete copies of the database, there
are n sites. In a geo-replication setting, these sites may be housed in geographically distributed data centers.

Applications perform queries and updates against the database. A transaction is an application-defined group
of database operations (queries and updates) that can be executed as an indivisible atomic unit. The database
servers that manage the database partition replicas work together as a distributed database management system
to handle the application’s transactions. The “gold standard” for the distributed database system is to provide a
one-copy serializability [3] guarantee for application transactions. Such a guarantee says that transactions will
behave as if they executed sequentially on a single (non-replicated) copy of the database. In practice, however,
some of the systems that we will describe will fall short of this gold standard in one or more ways.
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Sharded Transactional	Store

• Full ACID semantics	for	transactions
• Transactions	can	span	multiple shards
• Servers	should	only	process	transactions	
involving	the	shards they	store

• Unlimited concurrency
• Up	to	f	servers	can	fail	in	every	shard
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How	to	commit	a	transaction?

• In	a	sharded (partitioned)	datastore
• Touching	objects	in	multiple shards
• Assuming	reliable	shards	(for	now)
• ACID guarantees
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How	to	commit	a	transaction?

• Two-Phase	Commit	(2PC)
– Coordinate	distributed	decision

• Concurrency	control	(CC)
– Ensure	a	suitable	isolation	level
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How	to	commit	a	transaction?

• Traditionally	studied	in	isolation
• In	reality,	tightly	intertwined

• We	introduce	a	unified	framework	that	
captures	both
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Reliable	Shards
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Reliable	Shards
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Optimistic	Concurrency	Control	(OCC)

• Reads	can	be	served	in	any	order	by	any
replica

• Writes	are	buffered	(“deferred”)
• Certification	requests	carry	read-set and	
write-set

19



Certification	Functions

• Models	conflict	checks
• Determines	if	a	transaction	should	COMMIT or	
ABORT given	its	context	(prior	committed	
transactions)

20
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2 Transaction Certification Service

Interface. A Transaction Certification Service (TCS) accepts transactions from T and
produces decisions from D = {abort, commit}. Clients interact with the TCS using two
types of actions: certification requests of the form certify(t), where t œ T , and responses
of the form decide(t, d), where d œ D.

In this paper we focus on transactional processing systems using optimistic concurrency
control. Hence, we assume that a transaction submitted to the TCS includes all the inform-
ation produced by its optimistic execution. As an example, consider a transactional system
managing objects in the set Obj with values in the set Val, where transactions can execute
reads and writes on the objects. The objects are associated with a totally ordered set Ver
of versions with a distinguished minimum version v

0

. Then each transaction t submitted to
the TCS may be associated with the following data:

Read set R(t) ™ 2Obj◊Ver: the set of objects with their versions that t read, which contains
at most one version per object.
Write set of W (t) ™ 2Obj◊Val: the set of objects with their values that t wrote, which
contains at most one value per object. We require that any object written has also been
read: ’(x, _) œ W (t). (x, _) œ R(t).
Commit version Vc(t) œ Ver: the version to be assigned to the writes of t. We require
that this version be higher than any of the versions read: ’(_, v) œ R(t). Vc(t) > v.

Certification functions. A TCS is specified using a certification function f : 2T ◊ T æ
D, which encapsulates the concurrency-control policy for the desired isolation level. The
result f(T, t) is the decision for the transaction t given the set of the previously committed
transactions T . We require f to be distributive in the following sense:
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1
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where the Ù operator is defined as follows: commit Ù commit = commit and d Ù abort =
abort for any d. This requirement is justified by the fact that common definitions of f(T, t)
check t for conflicts against each transaction in T .

For example, given the above domain of transactions, the following certification func-
tion encapsulates the classical concurrency-control policy for serializability [35]: f(T, t) =
commit i� none of the versions read by t have been overwritten by a transaction in T , i.e.,

’x, v. (x, v) œ R(t) =∆ (’t

Õ œ T. (x, _) œ W (tÕ) =∆ Vc(tÕ) Æ v). (2)

A certification function for snapshot isolation (SI) [1] is similar, but restricts the certification
check to objects the transaction t writes: f(T, t) = commit i�

’x, v. (x, v) œ R(t) · (x, _) œ W (t) =∆ (’t

Õ œ T. (x, _) œ W (tÕ) =∆ Vc(tÕ) Æ v). (3)

It is easy to check that the certification functions (2) and (3) are distributive.

Histories. We represent TCS executions using histories—sequences of certify and decide
actions such that every transaction appears at most once as a parameter to certify, and
each decide action is a response to exactly one preceding certify action. For a history h we
let act(h) be the set of actions in h. For actions a, a

Õ œ act(h), we write a ªh a

Õ when a occurs
before a

Õ in h. A history h is complete if every certify action in it has a matching decide
action. A complete history is sequential if it consists of pairs of certify and matching
decide actions. A transaction t commits in a history h if h contains decide(t, commit).
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Multi-Shot	Transaction	Commit

• Certify(tx),	Decide(tx,	COMMIT	|	ABORT)
• Correctness:	CF-consistent	linearization	of	
committed	Certify	requests

21
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Problem	Statement

• Implement	a	resilient TCS	with	a	given	CF
– ≤ f servers	can	fail in	every shard
– Transactions	can	span	multiple shards
– Servers	must	only	process	transactions	involving	
the	shards they	store

– Unlimited concurrency
– Eventual	synchrony	(or	eventual	leader)
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Our	Contribution
• Family	of	resilient cross-shard TCS	protocols

• Crash fault-tolerant	(CFT):	2f+1	replicas/group
– Optimal	latency,	unbounded	pipelining	

• Byzantine fault-tolerant	(BFT):	3f+1	replica/group	
– Latency	matching	PBFT,	unbounded	pipelining
– First	of	a	kind?

• Formal	framework	for	multi-shot	transaction	commit
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Setting
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“Black-box”	Solution

• Two-Phase	Commit	(2PC)	to	coordinate	cross-
shard	transaction	commit

• Paxos in	every	replica	group
– Ordered	transaction	log	for	concurrency	control
– 2PC	state	for	each	transaction	
(prepared/committed/aborted)

• Examples:	Spanner,	Scatter,	Granola,	etc.
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“Black-Box”:	Failure-Free	Case
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“Black-Box”:	Failure-Free	Case
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Goals

• Eliminate	black-box	abstractions

• Design	single	coherent	protocol

• Identify	optimization	opportunities
– For	failure-free	case
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Recipe

• Abstract	protocol	to	solve	multi-shot	
transaction	commit	with	reliable shards

• Refine to	obtain	a	resilient solution	for	a	
desired	failure	model
– CFT	or	BFT

29



Abstract	Multi-Shot	2PC

30
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1 next Ω ≠1 œ Z;
2 txn[ ] œ N æ T ;
3 vote[ ] œ N æ {commit, abort};
4 dec[ ] œ N æ {commit, abort};
5 phase[ ] Ω (⁄k. start) œ N æ {start, prepared, decided};

6 function certify(t)
7 send PREPARE(t) to proc(shards(t));

8 when received PREPARE(t)
9 next Ω next + 1;

10 txn[next] Ω t;
11 vote[next] Ω fs0({txn[k] | k < next·phase[k] = decided·dec[k] = commit}, t) Ù

gs0({txn[k] | k < next·phase[k] = prepared·vote[k] = commit}, t);
12 phase[next] Ω prepared;
13 send PREPARE_ACK(s

0

, next, t, vote[next]) to coord(t);

14 when received PREPARE_ACK(s, poss, t, ds) for every s œ shards(t)
15 send DECISION(t,

d
sœshards(t)

ds) to client(t);
16 forall s œ shards(t) do send DECISION(poss,

d
sœshards(t)

ds) to proc(s);

17 when received DECISION(k, d)
18 dec[k] Ω d;
19 phase[k] Ω decided;

20 non-deterministically for some k œ N
21 pre: phase[k] = decided;
22 phase[k] Ω prepared;

23 non-deterministically for some k œ N
24 pre: phase[k] ”= start;
25 send PREPARE_ACK(s

0

, k, txn[t], vote[k]) to coord(t);

Figure 1 Multi-shot 2PC protocol at a process pi managing a shard s0.

process also computes its vote, saying whether to commit or abort the transaction, and
stores it in an array vote. We explain the vote computation in the following; intuitively,
the vote is determined by whether the transaction t conflicts with a previously received
transaction. After the process managing a shard s receives t, we say that t is prepared at s.
The process keeps track of transaction status in an array phase, whose entries initially store
start, and are changed to prepared once the transaction is prepared. Having prepared the
transaction t, the process sends a PREPARE_ACK message with its position in the certification
order and the vote to the coordinator of t. This is a process determined using a function
coord : T æ P such that ’t. coord(t) œ proc(shards(t)).

The coordinator of a transaction t acts once it receives an PREPARE_ACK message for t

from each of its shards s, which carries the vote ds by s (line 14). The coordinator computes
the final decision on t using the Ù operator (§2) and sends it in DECISION messages to
the client and to all relevant shards. When a process receives a decision for a transaction
(line 17), it stores the decision a dec array, and advances the transaction’s phase to decided.



CFT	Protocol	Overview
• Maintain	a	contiguous prefix of	the	vote	history	
(certification	order)	in	every	replica	group

• Leaders can	compute	votes	locally and	persist	at	a	
majority	through	a	consensus	round
– No	need	in	2nd consensus	to	persist	the	decision!

• Coordinator is	stateless
– Can	learn	of	the	votes	directly	from	replicas
– Can	also	drive	a	new	decision	without	risking	conflicts
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CFT	Protocol:	Failure-Free	Case
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BFT	Protocol	Overview

• Reduce	to	a	single	consensus	via	certification	
order	agreement in	every	replica	group

• Extra	message	delay	to	verify the	leader’s	vote
– Vote	computation	verification	to	prevent	spurious	
aborts

• Many-to-many exchange	pattern	for	independent	
verification

• Failure-free	latency	is	the	same	as	PBFT	
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Failure-Free	Case	Latency
CFT BFT

”Black-box”	TCS
protocols

5	(client)
8 (decision)

N/A

Our	TCS
protocols

4	(client)
4	(decision)

5	(client	and	decision)
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• Match	latency	of	consensus
• Known	to	be	optimal	for	CFT

– Collocated	coordinator	and	client
– Use	many-to-many	exchange	instead	of	leader-based	
protocol



Future	Work

• Study	complexity	for	different	sharding
strategies

• Support	pessimistic	concurrency	control

• TCS	BFT	protocol	for	blockchain scaling
– E.g.,	cross-channel	transactions	in	Hyperledger
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