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What is a Blockchain?
• A chain (sequence, typically a hash chain) of blocks of transactions

- Each block consists of a number of (ordered) transactions
- Blockchain establishes total order of transactions
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Blockchain evolution (2009-present)
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2009
Bitcoin Blockchain 1.0

• A hard-coded cryptocurrency application 
w. limited stack-based scripting language

• Proof-of-work-consensus
• Native cryptocurrency (BTC)
• Permissionless blockchain system

2014
Ethereum Blockchain 2.0

• Distributed applications (smart contracts) 
in a domain-specific language (Solidity)

• Proof-of-work-consensus (transition to Proof of Stake?)
• Native cryptocurrency (ETH)
• Permissionless blockchain system

2017
Hyperledger

Fabric
Blockchain 3.0

• Distributed applications (chaincodes) 
in different general-purpose languages 
(e.g., golang, Java, Node) 

• Modular/pluggable consensus
• No native cryptocurrency
• Multiple instances/deployments
• Permissioned blockchain system
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Consensus: growing the chain

• How does the chain grow?

Most popular blockchain technique (used also in Bitcoin): 

Proof-of-Work (PoW)
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Growing Proof-of-Work (PoW)-based Blockchain

 Block “mining”:
─ Every participant (“miner”) tries to find nonces
─ such that the hash of the block h is lower than a 256-bit target

 Bitcoin
─ Target dynamically adjusted every 2016 blocks
─ 1 block generated roughly every 10 minutes
─ This currently requires roughly 280 expected hashes per block
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Forks

 If multiple miners mine the next block, consensus (on the next block) 
might be broken

PoW acts as an unreliable concurrency control mechanism – it may fail in this

 Hence, Bitcoin miners adopt a conflict resolution policy
─ They will temporarily store both 237A and 237B
─ A fork being extended longer (in fact with more work) eventually prevails
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Example (longest/most difficult chain wins)
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Implications and the performance issues

PoW way of extending the ledger heavily and negatively impacts 
system scalability and overall throughput

 Bitcoin: With 1 block every 10 minutes and fixed block size of 1 MB
─ Peak throughput: only 6-7 tx/sec
─ Latency (of 6 block confirmations): about 1h
─ Enormous energy consumption!

 https://digiconomist.net/bitcoin-energy-consumption
─ 71 TWh/year  8GW of power
─ More than Switzerland, 0.32% of world electricity consumption
─ 987 kWh per transaction!
─ Average US household in 2016  897 kWh per month
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Better performance by tuning PoW parameters?

 Limited benefits, potentially weaker security
─ shorter block generation times (increasing block frequency)?
─ larger blocks?
─ Different conflict resolution rules?

 From Gervais et al. CCS’16 paper https://eprint.iacr.org/2016/555

 Bitcoin 6 blocks (1hour) ~ Ethereum 37 blocks (9-10 minutes)

 PoW blockchains can attain up to 60 tps with Bitcoin-like probability of 
stale blocks
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Boosting consensus: Enter Proof of Stake (PoS)

 PoS usually sits on top of PoW tree datastructure

 Allows nodes with more stake/weight to form blocks more often 
effectively lowering the difficulty

 “Nothing at stake” problem?

 Centralization?
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PoS “Nothing-at-Stake” Forks

 PoS breaks ties selecting forks (branches) with more stake on them 

 Very susceptible to ”double-spend” attacks in absence of penalties

 Example with 3% of stake double spending
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Casper – Friendly Finality Gadget

 Ethereum PoS

 Buterin/Griffith
─ https://arxiv.org/abs/1710.09437

 Leverages BFT techniques to limit the effects of forks and to address 
nothing at stake problem
─ Byzantine Fault Tolerant (BFT) agreement to settle on a single block and 

penalize equivocating nodes

 Relies on node synchrony as well

 Announced as early as in 2015, still being figured out…
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BFT in Blockchains

 BFT is known to matter for permissioned blockchains

 With PoS BFT importance extends also to permissionless blockchains
─ All PoS protocols resort in one way or another to BFT
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PoW vs. BFT for Blockchain (simplified overview)
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(Sybil attack)
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(Decentralized protection by PoW
compute/hash power)

Centralized, all Nodes know all other Nodes (Centralized 
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Scalability
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Excellent, >100k Nodes Verified up to few tens (or so) Nodes
Can scale to 100 nodes with certain performance 
degradation
(scalability limits not well explored)
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Excellent Excellent

Latency Poor, up to 1h (Bitcoin)
From 9-10 mins (Ethereum)

Depends on the implementation/deployment (order of ms)

Peak 
Throughput

from 7 tx/sec (Bitcoin) >10k tx/sec with existing implem. in software [<20…100 
nodes]

Power 
efficiency

>8 GW (Bitcoin) Good (commodity hardware)

Temporary 
forks in 
blockchain

Possible (leads to double-spending 
attacks)

Not possible
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Challenge #4: Consensus modularity/pluggability
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M. Vukolić. The Quest for Scalable Blockchain Fabric:Proof-of-Work vs. BFT Replication
In Open Problems in Network Security Workshop, 2015. 

Honeybadger
Ouroboros

Algorand

Open research problem:

Given the use case, network, no. of nodes
What is the most suitable Blockchain consensus?



© 2015 IBM Corporation

Outstanding challenges in BFT for blockchains?

 Maximizing throughput on WANs
─ Retaining acceptable latency, performance in clusters

 Scaling to 100+ nodes, without sacrificing performance
─ Supporting dynamic node reconfiguration

 Robust but understandable protocols

 Scalable incentives
─ Transaction fee payment on BFT that does not immediately become a bottleneck

 Simplicity, provability and testing
17
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BFT Consensus 101 (example of PBFT [TOCS2002], implemented in 
Hyperledger Fabric v0.6)
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Maximizing throughput in clusters is fairly known

 LCR Crash fault tolerant protocol [Guerraoui et al, TOCS 2010]
─ Ring-based protocol 
─ Throughput effectively limited only by replicas’ NIC bandwidth

 The next 700 BFT protocols [Aublin et al, TOCS 2015]
─ Can run O(n) BFT protocol of a basically arbitrary communication pattern 

including (a very load-balanced one) in the optimistic case
─ Backed by any BFT protocol (e.g., PBFT) to cover the worst case without 

redesigning the entire protocol/system
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Maximizing throughput in WANs

 Need to address the bottleneck at the leader 

 Ring topology from clusters will not work in WANs 
─ Linear latencies may be too much

 Alternatives?
─ Gossip, tree-multicast, leaderless,…

 Pipelined message patterns should be a norm
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Going to 100+ nodes [and reconfiguring them]

 In 40 years of research we tried [unsuccessfully] to sell n=4…

 Now we suddenly need BFT with  n~100… n~1000… n~1000000
─ That scale was not even tested for CFT

 What can we do? (except sharding)
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Revisiting the assumptions

 XFT [Liu et al., OSDI 2016]    http://arxiv.org/abs/1502.05831

 BFT assumes powerful adversary 
─ controlling the network among correct nodes
─ and f Byzantine nodes out of 3f+1 nodes
─ Simultaneous control over network and Byzantine nodes may be difficult to 

pull out in the blockchain setting

 XFT: at most f of partitioned nodes and Byzantine nodes at any time
─ Have the cost of CFT consensus without trusted hardware

 Most blockchains assume some sort of synchrony
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SMR model CFT XFT BFT
Number of Nodes 2f+1 2f+1 3f+1

Tolerating Byzantine Nodes no yes yes
Performance Good Practically as good as CFT Poor (compared to CFT)

http://arxiv.org/abs/1502.05831
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Committees, subcommittees

 Algorand [SOSP 2017]
─ Claims to run on 500 000 nodes
─ Actually relies on PBFT-variant among a much smaller subcommittee (n<100)

 What are the limits on natively running BFT across all nodes?

 At which point probabilistic protocols outperform deterministic ones?
─ And vice-versa
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Reconfiguration is an issue
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Need more assumptions:
• Synchrony?
• 3f+1 on old configurations?
• Blockchain DNS?
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We need robustness – but we need it understandable

Properties under faults, bad conditions are critical

 Prime, Spinning, Aardvark, RBFT, RAliph, have been around for some 
time now…

 But how accessible are these techniques to blockchain backend 
programmers?

 Good example is Spinning rotating leader paradigm
─ Simple, yet effective for a number of performance attacks
─ Unfortunately does not solve all issues 

25



© 2015 IBM Corporation

Understandable, testable code

 SBFT implementation (PBFT variant written for Hyperledger Fabric)
─ 1000 lines of Go code to implement OSDI/TOCS PBFT

 Deterministic testing frameworks
─ Every new feature/CR needs to come with a distributed test

 Formal methods, model checking are great 
─ but there is a gap wrt reality and code that actually runs
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It is not about ordering only

 Applications can easily become a bottleneck

 In Hyperledger Farbic application bottleneck is currently at less 
than 10000tps

 We need scalable mechanisms for any per-transaction processing 
that BFT consensus is doing
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Near-term “Holy Grail” of blockchain scalability

Can we have a blockchain protocol 

(single shard? :)

Scaling to hundreds of nodes

Sustaining VISA-like performance numbers?

(seconds latency, about 5k tps on average, few 10k tps peak throughput)

An even “Holier Grail”:

can we do this with some notion of 

transaction confidentiality?
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Ultimate “Holy Grail” of blockchain scalability

Can we have a blockchain protocol 

Scaling to hundred(s) of nodes on WANs

With network bounded throughput

And network/speed of light bounded latency?

An even “More ultimate Holier Grail”:

can we do this with some notion of 

transaction confidentiality?
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Thank you

You have the new best consensus protocol?

Consider integrating it in 

30



©2016 IBM Corporation 

Thank You!
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