
© 2015 IBM Corporation

Blockchain Consensus Protocols:
an Outlook

Marko Vukolić, IBM Research - Zurich

June 29, 2018

IFIP WG 10.4 meeting
Clervaux, Luxembourg



© 2015 IBM Corporation

What is a Blockchain?
• A chain (sequence, typically a hash chain) of blocks of transactions

- Each block consists of a number of (ordered) transactions
- Blockchain establishes total order of transactions

2

#234 #235 #236…#1
#0

Genesis 
block

Node A Node E

Node B Node D

Node C

Node F

Ledger

Ledger

Ledger

Ledger

Ledger

Ledger

Consensus 
protocol 
ensures ledger 
replicas are 
identical*

datastructure

Network of 
untrusted nodes



© 2015 IBM Corporation

Blockchain evolution (2009-present)

3

2009
Bitcoin Blockchain 1.0

• A hard-coded cryptocurrency application 
w. limited stack-based scripting language

• Proof-of-work-consensus
• Native cryptocurrency (BTC)
• Permissionless blockchain system

2014
Ethereum Blockchain 2.0

• Distributed applications (smart contracts) 
in a domain-specific language (Solidity)

• Proof-of-work-consensus (transition to Proof of Stake?)
• Native cryptocurrency (ETH)
• Permissionless blockchain system

2017
Hyperledger

Fabric
Blockchain 3.0

• Distributed applications (chaincodes) 
in different general-purpose languages 
(e.g., golang, Java, Node) 

• Modular/pluggable consensus
• No native cryptocurrency
• Multiple instances/deployments
• Permissioned blockchain system



© 2015 IBM Corporation

Consensus: growing the chain

• How does the chain grow?

Most popular blockchain technique (used also in Bitcoin): 

Proof-of-Work (PoW)

4



© 2015 IBM Corporation

Growing Proof-of-Work (PoW)-based Blockchain

 Block “mining”:
─ Every participant (“miner”) tries to find nonces
─ such that the hash of the block h is lower than a 256-bit target

 Bitcoin
─ Target dynamically adjusted every 2016 blocks
─ 1 block generated roughly every 10 minutes
─ This currently requires roughly 280 expected hashes per block

5

#234… #235 #236

A =hash of block #236
B = Root hash of

Merkle tree of tx
hashes

C = nonce 1
D = nonce 2

Block #237

Transactions
(payload)

h = hash of Block #237 = SHA256(A||B||C||D)



© 2015 IBM Corporation

Forks

 If multiple miners mine the next block, consensus (on the next block) 
might be broken

PoW acts as an unreliable concurrency control mechanism – it may fail in this

 Hence, Bitcoin miners adopt a conflict resolution policy
─ They will temporarily store both 237A and 237B
─ A fork being extended longer (in fact with more work) eventually prevails

6

#234… #235 #236

#237
A

#237
B

?



© 2015 IBM Corporation

Example (longest/most difficult chain wins)

7

#234… #235 #236

#237
A

#237
B

#238
B

#239
B



© 2015 IBM Corporation8

#234… #235 #236

#237
A

#237
B

#238
B

#239
B

Orphaned block

Example (longest/most difficult chain wins)



© 2015 IBM Corporation

Implications and the performance issues

PoW way of extending the ledger heavily and negatively impacts 
system scalability and overall throughput

 Bitcoin: With 1 block every 10 minutes and fixed block size of 1 MB
─ Peak throughput: only 6-7 tx/sec
─ Latency (of 6 block confirmations): about 1h
─ Enormous energy consumption!

 https://digiconomist.net/bitcoin-energy-consumption
─ 71 TWh/year  8GW of power
─ More than Switzerland, 0.32% of world electricity consumption
─ 987 kWh per transaction!
─ Average US household in 2016  897 kWh per month

9

https://digiconomist.net/bitcoin-energy-consumption


© 2015 IBM Corporation

Better performance by tuning PoW parameters?

 Limited benefits, potentially weaker security
─ shorter block generation times (increasing block frequency)?
─ larger blocks?
─ Different conflict resolution rules?

 From Gervais et al. CCS’16 paper https://eprint.iacr.org/2016/555

 Bitcoin 6 blocks (1hour) ~ Ethereum 37 blocks (9-10 minutes)

 PoW blockchains can attain up to 60 tps with Bitcoin-like probability of 
stale blocks

10

https://eprint.iacr.org/2016/555


© 2015 IBM Corporation

Boosting consensus: Enter Proof of Stake (PoS)

 PoS usually sits on top of PoW tree datastructure

 Allows nodes with more stake/weight to form blocks more often 
effectively lowering the difficulty

 “Nothing at stake” problem?

 Centralization?

11



© 2015 IBM Corporation

PoS “Nothing-at-Stake” Forks

 PoS breaks ties selecting forks (branches) with more stake on them 

 Very susceptible to ”double-spend” attacks in absence of penalties

 Example with 3% of stake double spending

12

#234… #235 #236

#237
A

#237
B

49% stake

49% stake

2% stake “idle”51% stake
0% stake “idle”

52% stake
3% stake malicious



© 2015 IBM Corporation

Casper – Friendly Finality Gadget

 Ethereum PoS

 Buterin/Griffith
─ https://arxiv.org/abs/1710.09437

 Leverages BFT techniques to limit the effects of forks and to address 
nothing at stake problem
─ Byzantine Fault Tolerant (BFT) agreement to settle on a single block and 

penalize equivocating nodes

 Relies on node synchrony as well

 Announced as early as in 2015, still being figured out…

13

https://arxiv.org/abs/1710.09437


© 2015 IBM Corporation

BFT in Blockchains

 BFT is known to matter for permissioned blockchains

 With PoS BFT importance extends also to permissionless blockchains
─ All PoS protocols resort in one way or another to BFT

14



© 2015 IBM Corporation

PoW vs. BFT for Blockchain (simplified overview)

15

Proof of Work (Bitcoin, Ethereum,...) BFT state machine replication (Ripple, Stellar, Fabric,…)

Membership 
type

Permisionless Permissioned

User IDs
(Sybil attack)

Decentralized, Anonymous
(Decentralized protection by PoW
compute/hash power)

Centralized, all Nodes know all other Nodes (Centralized 
identity management or stake protect against Sybil attacks)

Scalability
(no. of Nodes)

Excellent, >100k Nodes Verified up to few tens (or so) Nodes
Can scale to 100 nodes with certain performance 
degradation
(scalability limits not well explored)

Scalability
(no. of Clients)

Excellent Excellent

Latency Poor, up to 1h (Bitcoin)
From 9-10 mins (Ethereum)

Depends on the implementation/deployment (order of ms)

Peak 
Throughput

from 7 tx/sec (Bitcoin) >10k tx/sec with existing implem. in software [<20…100 
nodes]

Power 
efficiency

>8 GW (Bitcoin) Good (commodity hardware)

Temporary 
forks in 
blockchain

Possible (leads to double-spending 
attacks)

Not possible



© 2015 IBM Corporation

Challenge #4: Consensus modularity/pluggability

16

M. Vukolić. The Quest for Scalable Blockchain Fabric:Proof-of-Work vs. BFT Replication
In Open Problems in Network Security Workshop, 2015. 

Honeybadger
Ouroboros

Algorand

Open research problem:

Given the use case, network, no. of nodes
What is the most suitable Blockchain consensus?



© 2015 IBM Corporation

Outstanding challenges in BFT for blockchains?

 Maximizing throughput on WANs
─ Retaining acceptable latency, performance in clusters

 Scaling to 100+ nodes, without sacrificing performance
─ Supporting dynamic node reconfiguration

 Robust but understandable protocols

 Scalable incentives
─ Transaction fee payment on BFT that does not immediately become a bottleneck

 Simplicity, provability and testing
17



© 2015 IBM Corporation

BFT Consensus 101 (example of PBFT [TOCS2002], implemented in 
Hyperledger Fabric v0.6)

18

Node A (leader)

Node B

Node C

Node D

Tx1

Commit the block to the 
local copy of blockchain
(if 2f+1 out of 3f+1 agree, 2/3rd majority)

In this example, all nodes have equal weights, the protocol can simply be 
adapted to weights/stakes

Tx2
Tx3
Tx4

Seq #24
View no

Validate the block
… #21 #22 #23 Tx1

Tx2
Tx3
Tx4

Seq #24
View no



© 2015 IBM Corporation

Maximizing throughput in clusters is fairly known

 LCR Crash fault tolerant protocol [Guerraoui et al, TOCS 2010]
─ Ring-based protocol 
─ Throughput effectively limited only by replicas’ NIC bandwidth

 The next 700 BFT protocols [Aublin et al, TOCS 2015]
─ Can run O(n) BFT protocol of a basically arbitrary communication pattern 

including (a very load-balanced one) in the optimistic case
─ Backed by any BFT protocol (e.g., PBFT) to cover the worst case without 

redesigning the entire protocol/system

19

Node A (leader)

Node B

Node C

Node D

Tx1
Tx2

Tx3
Tx4

seq no
View no

Protocol 
reconfiguration



© 2015 IBM Corporation

Maximizing throughput in WANs

 Need to address the bottleneck at the leader 

 Ring topology from clusters will not work in WANs 
─ Linear latencies may be too much

 Alternatives?
─ Gossip, tree-multicast, leaderless,…

 Pipelined message patterns should be a norm

20



© 2015 IBM Corporation

Going to 100+ nodes [and reconfiguring them]

 In 40 years of research we tried [unsuccessfully] to sell n=4…

 Now we suddenly need BFT with  n~100… n~1000… n~1000000
─ That scale was not even tested for CFT

 What can we do? (except sharding)

21



© 2015 IBM Corporation

Revisiting the assumptions

 XFT [Liu et al., OSDI 2016]    http://arxiv.org/abs/1502.05831

 BFT assumes powerful adversary 
─ controlling the network among correct nodes
─ and f Byzantine nodes out of 3f+1 nodes
─ Simultaneous control over network and Byzantine nodes may be difficult to 

pull out in the blockchain setting

 XFT: at most f of partitioned nodes and Byzantine nodes at any time
─ Have the cost of CFT consensus without trusted hardware

 Most blockchains assume some sort of synchrony

22

SMR model CFT XFT BFT
Number of Nodes 2f+1 2f+1 3f+1

Tolerating Byzantine Nodes no yes yes
Performance Good Practically as good as CFT Poor (compared to CFT)

http://arxiv.org/abs/1502.05831


© 2015 IBM Corporation

Committees, subcommittees

 Algorand [SOSP 2017]
─ Claims to run on 500 000 nodes
─ Actually relies on PBFT-variant among a much smaller subcommittee (n<100)

 What are the limits on natively running BFT across all nodes?

 At which point probabilistic protocols outperform deterministic ones?
─ And vice-versa

23



© 2015 IBM Corporation

Reconfiguration is an issue

24

1

2

3
4

5

6

7
8

Need more assumptions:
• Synchrony?
• 3f+1 on old configurations?
• Blockchain DNS?



© 2015 IBM Corporation

We need robustness – but we need it understandable

Properties under faults, bad conditions are critical

 Prime, Spinning, Aardvark, RBFT, RAliph, have been around for some 
time now…

 But how accessible are these techniques to blockchain backend 
programmers?

 Good example is Spinning rotating leader paradigm
─ Simple, yet effective for a number of performance attacks
─ Unfortunately does not solve all issues 

25



© 2015 IBM Corporation

Understandable, testable code

 SBFT implementation (PBFT variant written for Hyperledger Fabric)
─ 1000 lines of Go code to implement OSDI/TOCS PBFT

 Deterministic testing frameworks
─ Every new feature/CR needs to come with a distributed test

 Formal methods, model checking are great 
─ but there is a gap wrt reality and code that actually runs

26



© 2015 IBM Corporation

It is not about ordering only

 Applications can easily become a bottleneck

 In Hyperledger Farbic application bottleneck is currently at less 
than 10000tps

 We need scalable mechanisms for any per-transaction processing 
that BFT consensus is doing

27



© 2015 IBM Corporation

Near-term “Holy Grail” of blockchain scalability

Can we have a blockchain protocol 

(single shard? :)

Scaling to hundreds of nodes

Sustaining VISA-like performance numbers?

(seconds latency, about 5k tps on average, few 10k tps peak throughput)

An even “Holier Grail”:

can we do this with some notion of 

transaction confidentiality?

28



© 2015 IBM Corporation

Ultimate “Holy Grail” of blockchain scalability

Can we have a blockchain protocol 

Scaling to hundred(s) of nodes on WANs

With network bounded throughput

And network/speed of light bounded latency?

An even “More ultimate Holier Grail”:

can we do this with some notion of 

transaction confidentiality?

29



© 2015 IBM Corporation

Thank you

You have the new best consensus protocol?

Consider integrating it in 

30



©2016 IBM Corporation 

Thank You!


	Blockchain Consensus Protocols:�an Outlook
	What is a Blockchain?
	Blockchain evolution (2009-present)
	Consensus: growing the chain
	Growing Proof-of-Work (PoW)-based Blockchain 
	Forks
	Example (longest/most difficult chain wins)
	Slide Number 8
	Implications and the performance issues
	Better performance by tuning PoW parameters?
	Boosting consensus: Enter Proof of Stake (PoS)
	PoS “Nothing-at-Stake” Forks
	Casper – Friendly Finality Gadget
	BFT in Blockchains
	PoW vs. BFT for Blockchain (simplified overview)
	Challenge #4: Consensus modularity/pluggability
	Outstanding challenges in BFT for blockchains?
	BFT Consensus 101 (example of PBFT [TOCS2002], implemented in Hyperledger Fabric v0.6)
	Maximizing throughput in clusters is fairly known
	Maximizing throughput in WANs
	Going to 100+ nodes [and reconfiguring them]
	Revisiting the assumptions
	Committees, subcommittees
	Reconfiguration is an issue
	We need robustness – but we need it understandable
	Understandable, testable code
	It is not about ordering only
	Near-term “Holy Grail” of blockchain scalability
	Ultimate “Holy Grail” of blockchain scalability
	Thank you
	Slide Number 31

