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Context

¢ Byzantine fault tolerance is hot, again

+ Users have high expectations from systems
e Scalability, availability, security, ...
+ Some environments are unfriendly

e Malicious participants

® Blockchain combines both



nodes & edges

The rise of blockchain (Ethereum)
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“Challenges and pitfalls of partitioning blockchains” with E. Fynn
Workshop on Byzantine Consensus and Resilient Blockchains (BCRB 2018)




Scaling blockchains

® This talk isn’t about scaling blockchain
¢ But important aspect of scaling a system
® Possibly applicable to permissioned blockchains

e Not clear whether applicable to permissionless
blockchains



How to build scalable + available + robust systems”?




Sharded & replicated systems

+ Consistency criteria

o)

¢ \Neak consistency ﬂ 3
o

e Strong consistency ﬂ

+ Handling commands Iin sharded+replicated systems

e Order commands

¢ Execute commands



Ordering commands with sharding-+replication

® ntuitively

+ Any two replicas must order commands consistently within
and across shards

e Formally

+ Define relation < such that m < m’ iff there exists a non-faulty
process that orders m before m’

+ Relation < is acyclic



—ncapsulating reliability and order

e BFT Atomic multicast abstraction
+ multicast(m, dst), where dst is one or more groups (shards)

+ deliver(m): event at a process after m has been ordered



—ncapsulating reliability and order

o BFT Atomic multicast

+ Agreement: If a non-faulty process delivers message m,
then eventually all non-faulty processes in m’s destination
deliver m

+ Order: Relation < is acyclic

+ Validity: If a non-faulty process multicasts m, then eventually
all non-faulty processes in m’s destination deliver m

+ Integrity: A non-faulty process delivers m at most once and
only if some process multicast m



BFT Atomic multicast

¢ Key requirements
+ Protocol must reuse existing BFT tools and libraries

+ Protocol must deliver scalable performance
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Reusing existing systems

® Atomic broadcast
+ Special case of atomic multicast
+ Single group system

® | ong history of contributions, including BFT

+ PBFT, BFT-SMaRt, Prime, HoneyBadgerBFT, ...

+ Many academic contributions, not necessarily “usable”
systems
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Simple solution based on existing systems

e Naive BFT Atomic multicast
+ One group of processes orders all messages

+ Ordered messages relayed to destination groups
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Naive BFT Atomic multicast isn't good enough

® [t doesn’t scale with number of groups
+ Ordering group eventually becomes performance bottleneck

® |t is not suitable for geographically distributed settings

+ Latency induced by location of ordering group
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Delivering scalable performance

® (Genuine atomic multicast

+ Only sender and destinations should communicate to order a
message

+ Performance can scale with the number of groups

+ Latency depended on message destinations only
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ByzCast: BFT Atomic multicast

e Compromise between reusability and scalability

+ Builds on BFT Atomic broadcast

e actually, FIFO BFT Atomic multicast

+ Partially genuine
e Genuine for single-group messages

e Scales for single-group messages

15



ByzCast: BFT Atomic multicast

® Equip each group with a local FIFO BFT Atomic
broadcast

® Create an overlay tree with all destinations

® [o multicast message m

+ Order m first at the lowest common ancestor (LCA) of the
message destination

+ Successively order m until destinations
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ByzCast: BFT Atomic multicast
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ByzCast: BFT Atomic multicast

e Key invariants

+ Any two messages m and m’ atomically multicast to
common destinations are ordered by at least one inner group
X in the tree

+If m is ordered before m’ in g, then m is ordered before m’ in
any other group that orders both messages, thanks to the
FIFO atomic broadcast used in each group
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Performance evaluation

¢ Prototype (in Java) publicly available:
https://qithub.com/tarcisiocjr/byzcast

¢ Fach group uses BFT-SMaRt with 4 replicas
® 1 to 8 groups, 2-level overlay tree

e ByzCast vs. Naive multicast (Baseline)
+ Bottleneck in LAN

+ Latency in WAN
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Pertormance in LAN

® Single-group messages: scalable performance
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Pertormance in LAN

¢ Multi-group messages: ByzCast similar to Baseline
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Pertormance in LAN

¢ | atency CDF: local msgs not delayed by global msgs
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Pertormance in WAN

® Disaster-tolerant deployment

+ Failure of any single region

® Group members spread across 4 regions:
California (CA), Frankfurt (EU), North Virginia (VA) and

Japan (JP)

EU | CA | VA | JP
CA 165 — 70 112
VA 88 70 — 175
JP 239 | 112 | 175 —

Latencies between regions in milliseconds.
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Pertormance in WAN

¢ | atency: ByzCast more efficient for single-group msgs
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Building the overlay tree

® Short trees are better (for latency), but...

® |nner nodes may hamper performance

Throughput/’ 2-level 3-level
destination hi h1 h2 h3

~1200
msgs/sec

Workload Destinations

Uniform any 2 groups out of 4

Y
olele

Max throughput per group = 10k msgs/sec 25



Building the overlay tree

® Short trees are better (for latency), but...

® |nner nodes may hamper performance
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Building the overlay tree

¢ \Vith no auxiliary groups genuine protocol possible
sometimes, but not always

+e.9., skewed workload //ml — {81982}
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Why a tree?

e Case 1: Cycles
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Why a tree?

® Case 2: Nodes with two (or more) incoming arrows
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Final remarks

® More details in DSN 2018 paper
¢ Building tree overlay is a hard problem
¢ \Workload-based dynamic tree configuration

e Application in blockchain, mostly permissioned

e How malicious attacks propagate in BFT protocol
composition”? — thank you Yair! :-)
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