A simple recipe for scaling
Byzantine fault tolerant systems

Fernando Pedone

Universita della Svizzera italiana (USI)
Lugano, Switzerland

joint work with:

Alysson Bessani, University of Lisbon, Portugal

Tarcisio Ceolin Junior, Federal University of Santa Maria, Brazil

Paulo Coelho, Universita della Svizzera italiana (USI), Switzerland

Fernando Dotti, Pontificia Universidade Catdlica do Rio Grande do Sul, Brazil
Enrique Fynn, Universita della Svizzera italiana (USI), Switzerland

Christian Vuerich, Universita della Svizzera italiana (USI), Switzerland

Context

¢ Byzantine fault tolerance is hot, again

+ Users have high expectations from systems
e Scalability, availability, security, ...
+ Some environments are unfriendly

e Malicious participants

® Blockchain combines both

nodes & edges

The rise of blockchain (Ethereum)

108
—— # nodes
edges
107 4 |
|
[
106
6*107'
/”_‘
/ 5%107
4%107
105-
3%107 A
3 2 £
g o ¥ 8 i3 3
g 2 g iz 5 24107 - E
[a) = = T T T T T
g < w = 12.16 02.17 04.17 06.17 08.17 10.17 NS
104 4 T o)
07.15 08.15 09.15 10.15 11.15 12.15 01.16 02.16 03.16 04.16 05.16 06.16 07.16 08.16 09.16 10.16 11.16 12.16 01.17 02.17 03.17 04.17 05.17 06.17 07.17 08.17 09.17 10.17 11.17 12.17

date: Month.Year

“Challenges and pitfalls of partitioning blockchains” with E. Fynn
Workshop on Byzantine Consensus and Resilient Blockchains (BCRB 2018)

Scaling blockchains

® This talk isn’t about scaling blockchain
¢ But important aspect of scaling a system
® Possibly applicable to permissioned blockchains

e Not clear whether applicable to permissionless
blockchains

How to build scalable + available + robust systems”?

Sharded & replicated systems

+ Consistency criteria

o)

¢ \Neak consistency ﬂ 3
o

e Strong consistency ﬂ

+ Handling commands Iin sharded+replicated systems

e Order commands

¢ Execute commands

Ordering commands with sharding-+replication

® ntuitively

+ Any two replicas must order commands consistently within
and across shards

e Formally

+ Define relation < such that m < m’ iff there exists a non-faulty
process that orders m before m’

+ Relation < is acyclic

—ncapsulating reliability and order

e BFT Atomic multicast abstraction
+ multicast(m, dst), where dst is one or more groups (shards)

+ deliver(m): event at a process after m has been ordered

—ncapsulating reliability and order

o BFT Atomic multicast

+ Agreement: If a non-faulty process delivers message m,
then eventually all non-faulty processes in m’s destination
deliver m

+ Order: Relation < is acyclic

+ Validity: If a non-faulty process multicasts m, then eventually
all non-faulty processes in m’s destination deliver m

+ Integrity: A non-faulty process delivers m at most once and
only if some process multicast m

BFT Atomic multicast

¢ Key requirements
+ Protocol must reuse existing BFT tools and libraries

+ Protocol must deliver scalable performance

10

Reusing existing systems

® Atomic broadcast
+ Special case of atomic multicast
+ Single group system

® | ong history of contributions, including BFT

+ PBFT, BFT-SMaRt, Prime, HoneyBadgerBFT, ...

+ Many academic contributions, not necessarily “usable”
systems

11

Simple solution based on existing systems

e Naive BFT Atomic multicast
+ One group of processes orders all messages

+ Ordered messages relayed to destination groups

(my, [10,—]) é
m; — x '? ﬁ
my = {x,y} | [E (my, [11,1f°)

(my, [1,7]) | Y y

12

Naive BFT Atomic multicast isn't good enough

® [t doesn’t scale with number of groups
+ Ordering group eventually becomes performance bottleneck

® |t is not suitable for geographically distributed settings

+ Latency induced by location of ordering group

13

Delivering scalable performance

® (Genuine atomic multicast

+ Only sender and destinations should communicate to order a
message

+ Performance can scale with the number of groups

+ Latency depended on message destinations only

14

ByzCast: BFT Atomic multicast

e Compromise between reusability and scalability

+ Builds on BFT Atomic broadcast

e actually, FIFO BFT Atomic multicast

+ Partially genuine
e Genuine for single-group messages

e Scales for single-group messages

15

ByzCast: BFT Atomic multicast

® Equip each group with a local FIFO BFT Atomic
broadcast

® Create an overlay tree with all destinations

® [o multicast message m

+ Order m first at the lowest common ancestor (LCA) of the
message destination

+ Successively order m until destinations

16

ByzCast: BFT Atomic multicast

i3
My = 183, 84}
my = {€, 83}) A
/ 1 :'7 | auxiliary
groups
h3)

ho |
SOOI
target
~ groups
9o 93

of gq

17

ByzCast: BFT Atomic multicast

e Key invariants

+ Any two messages m and m’ atomically multicast to
common destinations are ordered by at least one inner group
X in the tree

+If m is ordered before m’ in g, then m is ordered before m’ in
any other group that orders both messages, thanks to the
FIFO atomic broadcast used in each group

18

Performance evaluation

¢ Prototype (in Java) publicly available:
https://qithub.com/tarcisiocjr/byzcast

¢ Fach group uses BFT-SMaRt with 4 replicas
® 1 to 8 groups, 2-level overlay tree

e ByzCast vs. Naive multicast (Baseline)
+ Bottleneck in LAN

+ Latency in WAN

19

Pertormance in LAN

® Single-group messages: scalable performance

|
Baseline ™

90000 ByzCast =}im¢# @ _ N

FBOO0 [

GO0 [

essages / seC]

EL4B000 v

0000 [

15000 -

Throughpu

1 Group 2 Groups 4 Groups 8 Groups*

Pertormance in LAN

¢ Multi-group messages: ByzCast similar to Baseline

Throughput [messages / sec]

H

Baselinle)
ByzCast mm

21

Pertormance in LAN

¢ | atency CDF: local msgs not delayed by global msgs

100 ! ! ! ! —
8o+ /,/” ,,, _
oof | L .

3 i

40 i .
| I | |
L | |

20 e e | Local only -------- 7

| | Global only ———-
) J ' ' Loclal w/ 10% glolbal
0 20 30 40 50 60
Latency [msec]

Pertormance in WAN

® Disaster-tolerant deployment

+ Failure of any single region

® Group members spread across 4 regions:
California (CA), Frankfurt (EU), North Virginia (VA) and

Japan (JP)

EU | CA | VA | JP
CA 165 — 70 112
VA 88 70 — 175
JP 239 | 112 | 175 —

Latencies between regions in milliseconds.

23

Pertormance in WAN

¢ | atency: ByzCast more efficient for single-group msgs

1050

900
3 750
n
E. 600
>

e
5 450

S 300}
150

0

Baseline (Local) ——
ByzCast (Local) ==

1 Group

2 Groups

(CA)

4 Groups

8 Groups

24

Building the overlay tree

® Short trees are better (for latency), but...

® |nner nodes may hamper performance

Throughput/’ 2-level 3-level
destination hi h1 h2 h3

~1200
msgs/sec

Workload Destinations

Uniform any 2 groups out of 4

Y
olele

Max throughput per group = 10k msgs/sec 25

Building the overlay tree

® Short trees are better (for latency), but...

® |nner nodes may hamper performance

Workload DRI T:;tl:g:t?:: Z-Iﬁ;’el hi 3-Iﬁ‘2’el h3
~9000
~ .
Y
KQH 9o 93 94 94 do 93 94

Max throughput per group = 10k msgs/sec 26

Building the overlay tree

¢ \Vith no auxiliary groups genuine protocol possible
sometimes, but not always

+e.9., skewed workload //ml — {81982}
g
1/12 — {g39 84}
93

94

27

Why a tree?

e Case 1: Cycles

/””1 — 181,82}
91
Aiz — {82, &3}

g \ml e
o7 &mz ny
o \m3 n,
from g,
m; < ms < m, < ny
from g, from g,

28

Why a tree?

® Case 2: Nodes with two (or more) incoming arrows

m; — {gl,gz} ms — {81983} \m \m
91 1 3 >
&mz &ml
94 92 "
m m
93 —
0 —— 93 from g,
\ m2 < ml < m3 < m2
from g, from g;

29

Final remarks

® More details in DSN 2018 paper
¢ Building tree overlay is a hard problem
¢ \Workload-based dynamic tree configuration

e Application in blockchain, mostly permissioned

e How malicious attacks propagate in BFT protocol
composition”? — thank you Yair! :-)

30

