
A simple recipe for scaling
Byzantine fault tolerant systems
Fernando Pedone
Università della Svizzera italiana (USI)
Lugano, Switzerland

joint work with:
 Alysson Bessani, University of Lisbon, Portugal
 Tarcisio Ceolin Junior, Federal University of Santa Maria, Brazil
 Paulo Coelho, Università della Svizzera italiana (USI), Switzerland
 Fernando Dotti, Pontificia Universidade Católica do Rio Grande do Sul, Brazil
 Enrique Fynn, Università della Svizzera italiana (USI), Switzerland
 Christian Vuerich, Università della Svizzera italiana (USI), Switzerland

Context

•Byzantine fault tolerance is hot, again
✦ Users have high expectations from systems

• Scalability, availability, security, …

✦ Some environments are unfriendly

• Malicious participants

•Blockchain combines both

�2

The rise of blockchain (Ethereum)

�3

“Challenges and pitfalls of partitioning blockchains” with E. Fynn
Workshop on Byzantine Consensus and Resilient Blockchains (BCRB 2018)

Scaling blockchains

•This talk isn’t about scaling blockchain

•But important aspect of scaling a system

•Possibly applicable to permissioned blockchains

•Not clear whether applicable to permissionless
blockchains

�4

How to build scalable + available + robust systems?

�5

x y

x x x

y y y

replicate

x

y

shard

x

y

✦ Consistency criteria

• Weak consistency

• Strong consistency

✦ Handling commands in sharded+replicated systems

• Order commands

• Execute commands

Sharded & replicated systems

�6

Ordering commands with sharding+replication

•Intuitively
✦ Any two replicas must order commands consistently within

and across shards

•Formally
✦ Define relation < such that m < m′ iff there exists a non-faulty

process that orders m before m′

✦ Relation < is acyclic

�7

Encapsulating reliability and order

•BFT Atomic multicast abstraction
✦ multicast(m, dst), where dst is one or more groups (shards)

✦ deliver(m): event at a process after m has been ordered

�8

Encapsulating reliability and order

•BFT Atomic multicast
✦ Agreement: If a non-faulty process delivers message m,  

then eventually all non-faulty processes in m’s destination
deliver m

✦ Order: Relation < is acyclic

✦ Validity: If a non-faulty process multicasts m, then eventually
all non-faulty processes in m’s destination deliver m

✦ Integrity: A non-faulty process delivers m at most once and
only if some process multicast m

�9

BFT Atomic multicast

•Key requirements
✦ Protocol must reuse existing BFT tools and libraries

✦ Protocol must deliver scalable performance

�10

Reusing existing systems

•Atomic broadcast
✦ Special case of atomic multicast

✦ Single group system

•Long history of contributions, including BFT
✦ PBFT, BFT-SMaRt, Prime, HoneyBadgerBFT, …

✦ Many academic contributions, not necessarily “usable”
systems

�11

Simple solution based on existing systems

•Naive BFT Atomic multicast
✦ One group of processes orders all messages

✦ Ordered messages relayed to destination groups

�12

x x x

y y y

m1 → x

m2 → {x, y}

(m1, [10,−])

(m2, [11,1])

(m2, [1,7])

Naive BFT Atomic multicast isn’t good enough

•It doesn’t scale with number of groups
✦ Ordering group eventually becomes performance bottleneck

•It is not suitable for geographically distributed settings
✦ Latency induced by location of ordering group

�13

Delivering scalable performance

•Genuine atomic multicast
✦ Only sender and destinations should communicate to order a

message

✦ Performance can scale with the number of groups

✦ Latency depended on message destinations only

�14

ByzCast: BFT Atomic multicast

•Compromise between reusability and scalability
✦ Builds on BFT Atomic broadcast

• actually, FIFO BFT Atomic multicast

✦ Partially genuine

• Genuine for single-group messages

• Scales for single-group messages

�15

ByzCast: BFT Atomic multicast

•Equip each group with a local FIFO BFT Atomic
broadcast

•Create an overlay tree with all destinations

•To multicast message m
✦ Order m first at the lowest common ancestor (LCA) of the

message destination

✦ Successively order m until destinations

�16

ByzCast: BFT Atomic multicast

�17

g1

auxiliary
groups

target
groups

h1

h2 h3

g2 g3 g4
(a) (b)

g1
g2
g3
g4

h1
h2
h3

timem2 m1

a-multicast(m)

m3

m

a-deliver(m)m

m2
m2

m1

m3

m1
x-broadcast

x-deliver

Fig. 1: (a) An overlay tree used in ByzCast with four target groups and three auxiliary groups. (b) An execution of ByzCast with three
messages: m1 is a-multicast to {g1, g2}, m2 to {g2, g3}, and m3 to g3. For clarity, each group has one (correct) process.

1) Any two messages m and m
0 atomically multicast to

common destinations are ordered by at least one inner
group xk in the tree.

2) If m is ordered before m
0 in xk, then m is ordered before

m
0 in any other group that orders both messages (thanks

to the FIFO atomic broadcast used in each group).
We illustrate an execution of ByzCast in Fig. 1 (b) with

messages m1, m2 and m3 a-multicast to groups {g1, g2},
{g2, g3}, and {g3}, respectively. Assuming the overlay tree
shown in Fig. 1 (a), m1 is first h2-broadcast in group h2.
Upon h2-delivering m1, processes in h2 atomically broadcast
m1 in g1 and in g2. Message m2 is first h1-broadcast, and
then it continues down the tree until it is delivered by g2 and
g3, its destination target groups. Message m3 is g3-broadcast
in g3 directly since it is addressed to a single group. The order
between m1 and m2 is determined by their delivery order at
h2 since h2 is the highest group to deliver both messages.

ByzCast is a partially genuine atomic multicast protocol.
While messages addressed to a single group are ordered by
processes in the destination group only, messages addressed
to multiple groups may involve auxiliary groups. For example,
in Fig. 1, the atomic multicast of m1 (resp., m2) involves h2

(resp., h1, h2 and h3), which is not a destination of m1 (resp.,
m2). Since m3 involves a single destination group, only m3’s
sender and g3, m3’s destination, must coordinate to order the
message. The performance of messages multicast to multiple
groups largely depends on the overlay tree, as we discuss in
the next section.

Finally, even though we described ByzCast with auxiliary
groups as inner nodes of the tree, Algorithm 1 does not need
this restriction: target groups can be inner nodes in the overlay
tree, or we can have a tree that contains target groups only.

C. Optimizations
Laying out ByzCast overlay tree is an optimization problem

with conflicting goals: on the one hand, we aim at short trees to
reduce the latency of global messages; on the other hand, when
laying out the tree, we must avoid overloading groups. For
example, in Fig. 1, the height of the lowest common ancestor
of m1 and m2 are two and three, respectively. A two-level

tree where the four target groups descend directly from one
auxiliary group would improve the latency of global messages.
However, in a two-level tree all global messages must start at
the root group, which could become a performance bottleneck.

We now formulate the problem of laying out an optimized
ByzCast tree. The following parameters are input:

• � and ⇤ as already defined, and N = � [⇤;
• D ✓ P(�): all possible destinations of a message, where

P(�) is the power set of �;
• F (d): maximum load in messages per second multicast

to destinations d in the workload, where d2D; and
• K(x): maximum performance in messages per second

that group x can sustain, 8x 2 N .
Given this input, the problem consists in finding the directed

edges E ✓ N ⇥N of the optimized overlay tree T = (N , E).
To more precisely state the optimization function with con-
straints, we introduce additional definitions.

• P(T , d): the set of groups involved in a multicast to d

(i.e., groups in the paths from lca(d) to all groups in d);
• H (T , d): the height of the lowest common ancestor of

groups in d;
• T (T , x) = {d | d 2 D and x 2 P(T , d)}: set of

destinations that involve group x; and
• L(T , x) =

P
d2T(T ,x) F (d): load imposed on group x.

Among the candidate overlay trees, respecting the above
restrictions, we are interested in those that minimize the height
of the various destinations.

minimize
X

d2D

H(T , d)

In addition to topological constraints, we have that the load
imposed to each group respects its capacity.

subject to 8x : L(T , x)  K(x)

D. Correctness
In this section, we prove that ByzCast satisfies all the

properties of atomic multicast (§II-B).

Lemma 1: For any message m atomically multicast to
multiple groups, let group x0 be the lowest common ancestor

m1 → {g1}
m2 → {g3, g4}
m3 → {g2, g3}

m1

m3

m2

ByzCast: BFT Atomic multicast

•Key invariants
✦ Any two messages m and m′ atomically multicast to

common destinations are ordered by at least one inner group
x in the tree

✦ If m is ordered before m′ in g, then m is ordered before m′ in
any other group that orders both messages, thanks to the
FIFO atomic broadcast used in each group

�18

Performance evaluation

•Prototype (in Java) publicly available:  
https://github.com/tarcisiocjr/byzcast

•Each group uses BFT-SMaRt with 4 replicas

•1 to 8 groups, 2-level overlay tree

•ByzCast vs. Naive multicast (Baseline)
✦ Bottleneck in LAN

✦ Latency in WAN

�19

Performance in LAN

•Single-group messages: scalable performance

�20

 0

 15000

 30000

 45000

 60000

 75000

 90000

1 Group 2 Groups 4 Groups 8 Groups*

Th
ro

ug
hp

ut
 [m

es
sa

ge
s

/ s
ec

] Baseline
ByzCast

Performance in LAN

•Multi-group messages: ByzCast similar to Baseline

�21

 0

 3000

 6000

 9000

 12000

 15000

 18000

 21000

1 Group 2 Groups 4 Groups 8 Groups

Th
ro

ug
hp

ut
 [m

es
sa

ge
s

/ s
ec

] Baseline
ByzCast

Performance in LAN

•Latency CDF: local msgs not delayed by global msgs

�22

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

[%
]

Latency [msec]

Local only
Global only

Local w/ 10% global

(a) Baseline

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

[%
]

Latency [msec]

Local only
Global only

Local w/ 10% global

(b) ByzCast

Fig. 7: Latency CDF with 10% of global messages.

 0

 150

 300

 450

 600

 750

 900

 1050

1 Group 2 Groups 4 Groups 8 Groups

La
te

nc
y

[m
se

c]

(CA)

Baseline (Local)
ByzCast (Local)

BFT-SMaRt

ByzCast (Global)
Baseline (Global)

 0

 150

 300

 450

 600

 750

 900

 1050

1 Group 2 Groups 4 Groups 8 Groups

La
te

nc
y

[m
se

c]

(EU)

 0

 150

 300

 450

 600

 750

 900

 1050

1 Group 2 Groups 4 Groups 8 Groups

La
te

nc
y

[m
se

c]

(JP)

 0

 150

 300

 450

 600

 750

 900

 1050

1 Group 2 Groups 4 Groups 8 Groups

La
te

nc
y

[m
se

c]

(VA)

Fig. 8: Latency with single client in WAN. Bars show median latency and wihiskers represent the 95-th percentile.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CA EU JP VA

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Baseline
ByzCast

36.8
(msgs/sec)

38.8
(msgs/sec)

34.6
(msgs/sec)

38.3
(msgs/sec)

Fig. 9: Normalized throughput with mixed workload in a WAN.

protocols that do not implement all the properties of atomic
multicast (e.g., [29], [39], [40]). We focus next on atomic

multicast algorithms that tolerate benign failures, since no
atomic multicast algorithm exists for Byzantine failures.

Existing atomic multicast algorithms fall into one of three
categories: timestamp-based, round-based, and ring-based.
Algorithms based on timestamps (i.e., [8], [9], [15], [36])
are genuine and variations of an early atomic multicast
algorithm [41], designed for failure-free systems. In these
algorithms, processes assign timestamps to messages, ensure
that destinations agree on the final timestamp assigned to
each message, and deliver messages following this timestamp
order. The algorithm in [9] ensures another property besides
genuineness called message-minimality. This property states
that the messages of the algorithm have a size proportional
to the number of destination groups of the multicast message,
and not to the total number of processes. Although ByzCast
is not genuine with respect to global messages, it satisfies this

Performance in WAN

•Disaster-tolerant deployment
✦ Failure of any single region

•Group members spread across 4 regions: 
California (CA), Frankfurt (EU), North Virginia (VA) and
Japan (JP)

�23

1) Local-area network (LAN): This environment consisted
of a set replica nodes with an eight-core Intel Xeon L5420
processor working at 2.5GHz, 8GB of memory, SATA SSD
disks, and 1Gbps ethernet card; and clients nodes with a
four-core AMD Opteron 2212 processor at 2.0GHz, 4GB of
memory, and 1Gbps ethernet card. Each node runs CentOS
7.1 64 bits. The RTT (round-trip time) between nodes in the
cluster is around 0.1ms.

2) Wide-area network (WAN): We used Amazon EC2, a
public wide-area network. All nodes are c4.xlarge instances,
with 4 vCPUs and 7.5GB of memory. We allocated nodes in
four regions: California (R1), North Virginia (R2), Frankfurt
(R3) and Tokyo (R4). Table I summarizes the latency between
pairs of regions in milliseconds.

EU CA VA JP
CA 165 � 70 112
VA 88 70 � 175
JP 239 112 175 �

TABLE I: Latencies within Amazon EC2 infrastructure.

3) Configuration: In all experiments, groups contain four
processes, each process running in a different node. The
number of groups depends on the tree layout. In the 2-level
tree we have from 2 to 8 target groups and 1 auxiliary for
global messages. In the 3-level tree we fix the number of
target groups to 4 and the number of auxiliary groups to 3,
as depicted in Fig. 1. In the WAN setup, we distribute clients
along all the regions and deploy each process of a group in
a different region. Consequently, the system can tolerate the
failure of a whole region.

C. Overlay tree versus workload
We start by assessing how the workload and the perfor-

mance of groups affect the overlay tree. We consider a system
with four target groups and up to three auxiliary groups
subject to two workloads. In both workloads we assume global
messages only since local messages are multicast directly to
target groups and do not affect the tree layout. In the uniform
workload, clients multicast messages to two groups and all
combinations of destinations have an equal probability of be-
ing chosen. In the skewed workload, clients multicast messages
to either groups {g1, g2} or to {g3, g4}. Moreover, we inject
higher load in the skewed workload. Table II details the two
workloads. Based on the experiments reported in §V-D, an
auxiliary group can sustain approximately 9500 messages/sec
(i.e., K(hi) = 9500 m/s).

Table III shows outcomes for the two workloads with two-
level (T2) and three-level (T3) trees (for the three-level tree
depicted in Fig. 1). For the uniform workload, a two-level

Uniform workload
Du = {{gi, gj}|1  i, j  4 ^ i 6= j} 8d 2 Du : Fu(d) = 1200 m/s

Skewed workload
Ds = {{g1, g2}, {g3, g4}} 8d 2 Ds : Fs(d) = 9000 m/s

TABLE II: Uniform and skewed workloads.

 0

 3000

 6000

 9000

 12000

 15000

 18000

 21000

Uniform workload Skewed workload

Th
ro

ug
hp

ut
 [m

es
sa

ge
s

/ s
ec

] 2-level tree
3-level tree

 0

 20

 40

 60

 80

 100

Uniform workload

[%
]

2-level tree
3-level tree

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

Skewed workload

[%
]

Latency [msec]

2-level tree
3-level tree

Fig. 3: ByzCast global messages throughput and latency CDF with
2-level and 3-level trees. Whiskers show 95% confidence interval.

tree is the best option since the root can sustain the load
(i.e., Lu(T2, h1) < K(h1)) and the sum of heights is lower
than in the three-level tree (12 instead of 16). For the skewed
workload, a two-level tree would impose too high a load on
the root (i.e., Ls(T2, h1) > K(h1)) and therefore it is not a
viable solution. In this case, in a three-level tree the traffic is
divided among the two branches of the tree (h2 and h3).

Fig. 3 exhibits the experimental results in terms of through-
put and latency Cumulative Distribution Function (CDF) for
each scenario. For the uniform workload, the average latency
with a two-level tree is lower than with a three-level tree,
although about 55% of messages have lower latency. This
happens because the three-level tree distributes the load more
uniformly among inner groups. In the skewed workload, the
high load on the root of the two-level tree leads to much higher
latencies than the three-level tree. The experiments presented
next (both LAN and WAN) use the 2-level tree.

D. Scalability of ByzCast in LAN

This experiment assesses the performance of ByzCast and
compares it to BFT-SMaRt (using a single group) and to Base-
line, a non-genuine atomic multicast approach. Fig. 4(a) shows
the throughput in messages per second versus the number of
groups, when 200 clients per group multicast local messages
only (except for the 8-group setup where there are 100 clients
per group since we do not have enough client nodes to deploy

Latencies between regions in milliseconds.

•Latency: ByzCast more efficient for single-group msgs

 0

 150

 300

 450

 600

 750

 900

 1050

1 Group 2 Groups 4 Groups 8 Groups

La
te

nc
y

[m
se

c]

(CA)

Baseline (Local)
ByzCast (Local)

ByzCast (Global)
Baseline (Global)

Performance in WAN

�24

Building the overlay tree

•Short trees are better (for latency), but…

•Inner nodes may hamper performance

�25

g1

auxiliary
groups

target
groups

h1

h2 h3

g2 g3 g4
(a) (b)

g1
g2
g3
g4

h1
h2
h3

timem2 m1

a-multicast(m)

m3

m

a-deliver(m)m

m2
m2

m1

m3

m1
x-broadcast

x-deliver

Fig. 1: (a) An overlay tree used in ByzCast with four target groups and three auxiliary groups. (b) An execution of ByzCast with three
messages: m1 is a-multicast to {g1, g2}, m2 to {g2, g3}, and m3 to g3. For clarity, each group has one (correct) process.

1) Any two messages m and m
0 atomically multicast to

common destinations are ordered by at least one inner
group xk in the tree.

2) If m is ordered before m
0 in xk, then m is ordered before

m
0 in any other group that orders both messages (thanks

to the FIFO atomic broadcast used in each group).
We illustrate an execution of ByzCast in Fig. 1 (b) with

messages m1, m2 and m3 a-multicast to groups {g1, g2},
{g2, g3}, and {g3}, respectively. Assuming the overlay tree
shown in Fig. 1 (a), m1 is first h2-broadcast in group h2.
Upon h2-delivering m1, processes in h2 atomically broadcast
m1 in g1 and in g2. Message m2 is first h1-broadcast, and
then it continues down the tree until it is delivered by g2 and
g3, its destination target groups. Message m3 is g3-broadcast
in g3 directly since it is addressed to a single group. The order
between m1 and m2 is determined by their delivery order at
h2 since h2 is the highest group to deliver both messages.

ByzCast is a partially genuine atomic multicast protocol.
While messages addressed to a single group are ordered by
processes in the destination group only, messages addressed
to multiple groups may involve auxiliary groups. For example,
in Fig. 1, the atomic multicast of m1 (resp., m2) involves h2

(resp., h1, h2 and h3), which is not a destination of m1 (resp.,
m2). Since m3 involves a single destination group, only m3’s
sender and g3, m3’s destination, must coordinate to order the
message. The performance of messages multicast to multiple
groups largely depends on the overlay tree, as we discuss in
the next section.

Finally, even though we described ByzCast with auxiliary
groups as inner nodes of the tree, Algorithm 1 does not need
this restriction: target groups can be inner nodes in the overlay
tree, or we can have a tree that contains target groups only.

C. Optimizations
Laying out ByzCast overlay tree is an optimization problem

with conflicting goals: on the one hand, we aim at short trees to
reduce the latency of global messages; on the other hand, when
laying out the tree, we must avoid overloading groups. For
example, in Fig. 1, the height of the lowest common ancestor
of m1 and m2 are two and three, respectively. A two-level

tree where the four target groups descend directly from one
auxiliary group would improve the latency of global messages.
However, in a two-level tree all global messages must start at
the root group, which could become a performance bottleneck.

We now formulate the problem of laying out an optimized
ByzCast tree. The following parameters are input:

• � and ⇤ as already defined, and N = � [⇤;
• D ✓ P(�): all possible destinations of a message, where

P(�) is the power set of �;
• F (d): maximum load in messages per second multicast

to destinations d in the workload, where d2D; and
• K(x): maximum performance in messages per second

that group x can sustain, 8x 2 N .
Given this input, the problem consists in finding the directed

edges E ✓ N ⇥N of the optimized overlay tree T = (N , E).
To more precisely state the optimization function with con-
straints, we introduce additional definitions.

• P(T , d): the set of groups involved in a multicast to d

(i.e., groups in the paths from lca(d) to all groups in d);
• H (T , d): the height of the lowest common ancestor of

groups in d;
• T (T , x) = {d | d 2 D and x 2 P(T , d)}: set of

destinations that involve group x; and
• L(T , x) =

P
d2T(T ,x) F (d): load imposed on group x.

Among the candidate overlay trees, respecting the above
restrictions, we are interested in those that minimize the height
of the various destinations.

minimize
X

d2D

H(T , d)

In addition to topological constraints, we have that the load
imposed to each group respects its capacity.

subject to 8x : L(T , x)  K(x)

D. Correctness
In this section, we prove that ByzCast satisfies all the

properties of atomic multicast (§II-B).

Lemma 1: For any message m atomically multicast to
multiple groups, let group x0 be the lowest common ancestor

vs.

g1

h1

g2 g3 g4

Workload Destinations Throughput/  
 destination

2-level 
h1

3-level 
h1 h2 h3

Uniform any 2 groups out of 4 ~1200  
msgs/sec 7.2k 4.8k 6k 6k

Max throughput per group = 10k msgs/sec

Best

Building the overlay tree

•Short trees are better (for latency), but…

•Inner nodes may hamper performance

�26

g1

auxiliary
groups

target
groups

h1

h2 h3

g2 g3 g4
(a) (b)

g1
g2
g3
g4

h1
h2
h3

timem2 m1

a-multicast(m)

m3

m

a-deliver(m)m

m2
m2

m1

m3

m1
x-broadcast

x-deliver

Fig. 1: (a) An overlay tree used in ByzCast with four target groups and three auxiliary groups. (b) An execution of ByzCast with three
messages: m1 is a-multicast to {g1, g2}, m2 to {g2, g3}, and m3 to g3. For clarity, each group has one (correct) process.

1) Any two messages m and m
0 atomically multicast to

common destinations are ordered by at least one inner
group xk in the tree.

2) If m is ordered before m
0 in xk, then m is ordered before

m
0 in any other group that orders both messages (thanks

to the FIFO atomic broadcast used in each group).
We illustrate an execution of ByzCast in Fig. 1 (b) with

messages m1, m2 and m3 a-multicast to groups {g1, g2},
{g2, g3}, and {g3}, respectively. Assuming the overlay tree
shown in Fig. 1 (a), m1 is first h2-broadcast in group h2.
Upon h2-delivering m1, processes in h2 atomically broadcast
m1 in g1 and in g2. Message m2 is first h1-broadcast, and
then it continues down the tree until it is delivered by g2 and
g3, its destination target groups. Message m3 is g3-broadcast
in g3 directly since it is addressed to a single group. The order
between m1 and m2 is determined by their delivery order at
h2 since h2 is the highest group to deliver both messages.

ByzCast is a partially genuine atomic multicast protocol.
While messages addressed to a single group are ordered by
processes in the destination group only, messages addressed
to multiple groups may involve auxiliary groups. For example,
in Fig. 1, the atomic multicast of m1 (resp., m2) involves h2

(resp., h1, h2 and h3), which is not a destination of m1 (resp.,
m2). Since m3 involves a single destination group, only m3’s
sender and g3, m3’s destination, must coordinate to order the
message. The performance of messages multicast to multiple
groups largely depends on the overlay tree, as we discuss in
the next section.

Finally, even though we described ByzCast with auxiliary
groups as inner nodes of the tree, Algorithm 1 does not need
this restriction: target groups can be inner nodes in the overlay
tree, or we can have a tree that contains target groups only.

C. Optimizations
Laying out ByzCast overlay tree is an optimization problem

with conflicting goals: on the one hand, we aim at short trees to
reduce the latency of global messages; on the other hand, when
laying out the tree, we must avoid overloading groups. For
example, in Fig. 1, the height of the lowest common ancestor
of m1 and m2 are two and three, respectively. A two-level

tree where the four target groups descend directly from one
auxiliary group would improve the latency of global messages.
However, in a two-level tree all global messages must start at
the root group, which could become a performance bottleneck.

We now formulate the problem of laying out an optimized
ByzCast tree. The following parameters are input:

• � and ⇤ as already defined, and N = � [⇤;
• D ✓ P(�): all possible destinations of a message, where

P(�) is the power set of �;
• F (d): maximum load in messages per second multicast

to destinations d in the workload, where d2D; and
• K(x): maximum performance in messages per second

that group x can sustain, 8x 2 N .
Given this input, the problem consists in finding the directed

edges E ✓ N ⇥N of the optimized overlay tree T = (N , E).
To more precisely state the optimization function with con-
straints, we introduce additional definitions.

• P(T , d): the set of groups involved in a multicast to d

(i.e., groups in the paths from lca(d) to all groups in d);
• H (T , d): the height of the lowest common ancestor of

groups in d;
• T (T , x) = {d | d 2 D and x 2 P(T , d)}: set of

destinations that involve group x; and
• L(T , x) =

P
d2T(T ,x) F (d): load imposed on group x.

Among the candidate overlay trees, respecting the above
restrictions, we are interested in those that minimize the height
of the various destinations.

minimize
X

d2D

H(T , d)

In addition to topological constraints, we have that the load
imposed to each group respects its capacity.

subject to 8x : L(T , x)  K(x)

D. Correctness
In this section, we prove that ByzCast satisfies all the

properties of atomic multicast (§II-B).

Lemma 1: For any message m atomically multicast to
multiple groups, let group x0 be the lowest common ancestor

vs.

g1

h1

g2 g3 g4

Max throughput per group = 10k msgs/sec

Best

Workload Destinations Throughput/  
 destination

2-level 
h1

3-level 
h1 h2 h3

Skewed {g1,g2},{g3,g4} ~9000  
msgs/sec 18k 0k 9k 9k

Building the overlay tree

•With no auxiliary groups genuine protocol possible
sometimes, but not always
✦ e.g., skewed workload

�27

g1

g2 g3

g4

m1 → {g1, g2}

m2 → {g3, g4}

Why a tree?

•Case 1: Cycles

�28

g1

g2

g3

g1

g2

g3

m1 → {g1, g2}

m2 → {g2, g3}

m3 → {g1, g3}

g1

g2

g3

m1

m1m2

m2m3

m3

m1 < m3 < m2 < m1
from g1

from g3

from g2

Why a tree?

•Case 2: Nodes with two (or more) incoming arrows

�29

g1

g2 g3

g1

g2 g3

m1 → {g1, g2} m3 → {g1, g3}
g1

g2

g3

m1
m1m2

m2m3

m3

m2 → {g2, g3}
m2 < m1 < m3 < m2

from g2

from g1

from g3

Final remarks

•More details in DSN 2018 paper

•Building tree overlay is a hard problem

•Workload-based dynamic tree configuration

•Application in blockchain, mostly permissioned

•How malicious attacks propagate in BFT protocol
composition? — thank you Yair! :-)

�30

