
Alysson Bessani

Experiences with BFT-SMaRt
as a consensus substrate of

Permissioned Ledgers

EXPERIENCES WITH DEPLOYED
BLOCKCHAINS

This session:

30/6/18 IFIP WG 10.4 Meeting 2

30/6/18 IFIP WG 10.4 Meeting 3

30/6/18 IFIP WG 10.4 Meeting 4

30/6/18 IFIP WG 10.4 Meeting 5

Outline

• BFT-SMaRt
– Overview
– Performance

• BFT-SMaRt in Permissioned Ledgers
– Symbiont
– Hyperledger Fabric
– R3 Corda

• Beyond BFT-SMaRt

30/6/18 IFIP WG 10.4 Meeting 6

BFT-SMART
Part 1

30/6/18 IFIP WG 10.4 Meeting 8

State Machine Replication

Safety: all replicas execute the same sequence of commands
Liveness: commands issued by correct clients are answered

op1

op2 Total Order Multicast

op1, op2

op1, op2

op1, op2

30/6/18 IFIP WG 10.4 Meeting 9

BFT-SMaRt
• Byzantine Fault tolerant state machine replication library

written in Java (under development since 2010)
• Tolerates either crash (2f+1 replicas) or Byzantine faults

(3f+1 replicas), under a partially synchronous system model
• Available under Apache license

http://bft-smart.github.io/library/ [Bessani et al. DSN’14]

Reliable and Authenticated Channels

Durability
and State
Transfer

Reconfig

Extensible State Machine Replication

Mod-SMaRt
VP-Consensus

30/6/18 IFIP WG 10.4 Meeting 10

http://bft-smart.github.io/library/

Client

P0

P1

P2

P3

VP-Consensus

(Byzantine)

Request ReplyPropose Write Accept

Client

P0

P1

P2

VP-Consensus

(Crash)

Request ReplyPropose Accept

BFT-SMaRt Ordering Protocols

30/6/18 IFIP WG 10.4 Meeting 11

Durability in BFT-SMaRt
[Bessani et al. USENIX ATC’13]

• Techniques for efficient durability
– Parallel Logging
– Sequential checkpoints
– Collaborative state transfer

invoke

setState
getState

Stable
Storage

log

Service

logBatch

ckp

Dura-Coordinator

SMR Server Side

SMR Client Side

Client App. setState
getState

execute Keeper

durability
layer

execBatch
invokeST
handlerST

30/6/18 IFIP WG 10.4 Meeting 12

BFT-SMaRt Reconfiguration

Initiated by the View Manager - a trusted client used
by system administrators that adds/removes replicas

View Manager

P0

P1

P2

P3

VP-Consensus

JOIN

P4
Mod-SMaRt

State Transfer

Inform P4 that it
joined the group

30/6/18 IFIP WG 10.4 Meeting 13

BFT-SMaRt Performance
(gigabit Ethernet, no disks)

4.5 Evaluation

 0

 20

 40

 60

 80

 100

f = 1 f = 2 f = 3

T
hr

ou
gh

pu
t (

ko
ps

/s
ec

on
ds

)

Number of faults

BFT CFT

(a) 0/0

 0

 20

 40

 60

 80

 100

f = 1 f = 2 f = 3

T
hr

ou
gh

pu
t (

ko
ps

/s
ec

on
ds

)

Number of faults

BFT CFT

(b) 0/1024

 0

 20

 40

 60

 80

 100

f = 1 f = 2 f = 3

T
hr

ou
gh

pu
t (

ko
ps

/s
ec

on
ds

)

Number of faults

BFT CFT

(c) 1024/0

 0

 20

 40

 60

 80

 100

f = 1 f = 2 f = 3

T
hr

ou
gh

pu
t (

ko
ps

/s
ec

on
ds

)

Number of faults

BFT CFT

(d) 1024/1024

Figure 4.6: Peak sustained throughput of BFT-SMART for CFT (2f + 1 replicas) and BFT
(3f + 1 replicas) considering different workloads and group sizes.

proposed request batch; and (3) we avoid the use of IP multicast, which is know to cause
problems with many senders (e.g., multicast storms) (Birman et al., 2009).

Finally, it is also interesting to see that, with relatively big requests (1024 bytes), the
difference between BFT and CFT tends to be very small, independently on the number of
tolerated faults. Moreover, the performance drops between tolerating 1 to 3 faults is also
much smaller with large payloads (both requests and replies).

Mixed workloads. Figure 4.7 reports the results of our experiment considering a mix of
read and write requests. In the context of this experiment, the difference between reads
and writes is that the former issues small requests (almost-zero size) but gets replies with
payload, whereas the latter issues requests with payload but gets replies with almost zero
size. This experiment was also conducted under a saturated system running 1600 clients.

We performed the experiment both for the BFT and CFT setups of BFT-SMART, using
requests and replies with payloads of 100 and 1024 bytes. Similarly to the previous exper-
iments, the CFT protocol outperforms its BFT counterpart regardless of the ratio of read to
write requests by around 5 to 15%. However, the observed behavior of the system regarding

67

<request size>/<reply size>

30/6/18 IFIP WG 10.4 Meeting 17

Performance under “sporadic” events

New replica
enters the
group

Leader
crashes

New leader
takes over

Old leader
recovers

Replica
removed
from the
group

30/6/18 IFIP WG 10.4 Meeting 18

BFT-SMART IN PERMISSIONED
LEDGERS

Part 1

30/6/18 IFIP WG 10.4 Meeting 20

• Startup from NY with 40+ people
• Technology
– Smart contracts on top of state machine replication
– BFT-SMaRt ported to Go

• Our involvement
– Never saw the code
– We talked a lot about collaboration, but just helped

them understand the code and debug the
synchronization phase of the protocol

30/6/18 IFIP WG 10.4 Meeting 21

• Open-source blockchain project targeting (at least
initially) the financial market

• Key idea: there is no shared global ledger
– Instead, there are many distributed ledgers

30/6/18 IFIP WG 10.4 Meeting 22

“Facts” shared
by Alice and Bob

“Fact” shared by
Ed, Carl and Demi

• Only involved participants have to execute and
validate the transaction

• A transaction is committed only if it achieve
– Validity consensus: all involved participants need to

validate and sign the transaction
– Uniqueness consensus: requires a notary service

30/6/18 IFIP WG 10.4 Meeting 23

Notary

• Notary implements an insert-only key-value store that
register all state “consumptions”

• Some specific transaction validation might be executed
• Multiple notaries might be used

30/6/18 IFIP WG 10.4 Meeting 24

NotaryNotary

NotaryNotary

BFT-SMaRt

• Open-source, modular, permissioned [EuroSys’18]
• Architecture: not all “peers” are equal

30/6/18 IFIP WG 10.4 Meeting 25

1. Create transaction,
send it to endorsing peers

3. Collect endorsements for
the same writeset and readset

4. Broadcast endorsed
transaction

2. Transaction simulation, create signed
endorsement with writeset and readset

5. Transaction validation and
committing

Total Order +
Block CreationOrdering service cluster

Peers

Client

• Fabric supports different ordering services
modules for different types of consensus

• Current release (v1.2.0) provides two:
– Centralized module (Solo)
– Apache Kafka-based module (Kafka)

• No module for Byzantine consensus

Ordering Cluster

• Uses the BFT-SMaRt replication library to
provide Byzantine fault-tolerant total order

• Compatible with release v1.1 of Fabric
• Comprised of an ordering cluster and a set

of frontends

Frontend 0 Frontend ff+1

Ordering
Node 3fo + 1

Ordering
Node 1

Ordering
Node 0

BFT-SMaRt ordering protocol

Go Java

BFT-SMaRt Ordering Service
[Sousa et al, DSN’18]

Fabric codebase (Go)

Java
SDK

Recv Thread

BFT-SMaRt Proxy

Client
Threads
Client

ThreadsClient
Threads

Frontend Ordering Nodes

Java SDK

Blockcutter

Node Thread

BFT-SMaRt Replica

Block
Creation
Threads

BFT-SMaRt Ordering Service

BFT-SMaRt Ordering Service

• Node state (to be persisted and transferred):
– the ordered transactions still in the blockcutter,
– header of the last generated block, and
– latest configuration block

• Blocks can be validated and signed in parallel
without incurring in non-determinism

• Frontends collect 2f+1 matching blocks signed
from different ordering nodes

Evaluation

• Factors at play:
…Workload

by Clients

Tx size
(es)

Ordering cluster size
(n)

Block size
(bs) Number of

Receiving
Frontends

(r)

LAN Evaluation

30/6/18 IFIP WG 10.4 Meeting 33

10 nodes (f=3)4 nodes (f=1)

Some takeaways

• (LAN) Even with blocks of 100 4kB-txs, 32
frontends and a cluster of 10 nodes, the
service orders ~2200 txs/sec
– This is considered a big network for Fabric
– (illustrative) 2x more than Ethereum’s theoretical

peak of 100 txs/sec, and vastly superior to
Bitcoin’s 7 txs/sec

• (WAN) 5 sites in 4 continents can order 1kB-
txs in < 400ms (w/ a load of 1000 txs/s)

BEYOND BFT-SMART
Part 1

30/6/18 IFIP WG 10.4 Meeting 37

Our Research Agenda

• Robust BFT replication library
– Maintain a good basic implementation

• Geo-replication
– Key BFT application: distributed trust

• Scalability & Elasticity
– Increase performance dynamically w/ additional replicas

• Diversity and Fault Independence
– How to withstand f malicious faults

• Design a simple blockchain “platform”
– How to go from BFT SMR to a Blockchain

30/6/18 IFIP WG 10.4 Meeting 38

Geo-Replicated State Machines
[Sousa & Bessani. SRDS’15]

Leader replica
Normal replica (BFT & CFT)
Normal replica (BFT only)

• Key techniques:
– More replicas
– Weighted replication
– Tentative execution

BFT
-37%

BFT
-35%

CFT
-56%

CFT
-28%

30/6/18 IFIP WG 10.4 Meeting 39

Elastic State Machine Replication
[Nogueira et al. IEEE TPDS’17]

Rebalance load
by migrating heavily
accessed partition to
another replica group

G

Split state to create
more storage and

processing capacity

Merge state to
better use
resources

G L

G L G L

G L L30/6/18 IFIP WG 10.4 Meeting 40

Elastic State Machine Replication

invoke

SMR Client Side

Client App.

…

SMR Server Side

Service

Durability

Partition Transfer
execute

Stable
Storage

get/setState

execute get/setState

SMR Server Side

Service

Durability

Partition Transfer
execute

Stable
Storage

get/setState

execute get/setState

Clients
Group G Group L

 0

 50

 100

 150

 200

No PT Split Merge Split Merge Split Merge

O
pe

ra
tio

n
la

te
nc

y
(m

s) ~0.415s

16MB 256MB 4GB

90%-ile
95%-ile
99%-ile

(a) Read-heavy (95/5) workload.

 0

 100

 200

 300

 400

 500

 600

No PT Split Merge Split Merge Split Merge

O
pe

ra
tio

n
la

te
nc

y
(m

s) ~2s ~5s

16MB 256MB 4GB

90%-ile
95%-ile
99%-ile

(b) Write-heavy (50/50) workload.

Figure 9. Operation latency without partition transfers, and dur-
ing splits and merges for both workloads using disks.

the split causes a similar effect on the throughput and the
latency when the group is in its peak throughput (Figure 7(a)
and Figure 7(c)) or saturated (hotspot).

Splitting the state using a 16MB block size leads to less
throughput and latency degradation than when using the
4GB block size. However, the split was twice faster when
we used a 4GB partition.

In conclusion, the results show that our ptransfer imple-
mentation allows a system to double its capacity when sub-
ject to huge load spikes either without any significant per-

formance disruption, taking 2.2 minutes to reconfigure, or
in a very fast way, in 1.2 minutes, with some significant but
affordable increase in the client-observed latency.

6. Related work
Several SMR protocols support the addition, removal and
replacement of replicas at runtime [5, 31, 33, 36, 39, 44].
However, these reconfigurations only change the set of repli-
cas in a single group, and do not improve the performance of
the system since the protocols used for ordering requests are
inherently non-scalable. To the best of our knowledge, we
are the first to propose a primitive and protocol for sharding
SMR systems at runtime.

Different techniques have been proposed to improve the
scalability of SMR-based services. Some works try to re-
move bottlenecks both from the ordering protocol [35, 36]
and its implementation [42]. For example, protocols like
Mencius [35] and Egalitarian Paxos [36] try to spread the
additional load of the primary replica among all the system
replicas (in the case of EPaxos there is no primary at all). In
a complementary way, Santos and Schiper shows an SMR
implementation that efficiently uses the multi-core architec-
ture for achieving better throughput in terms of commands
ordered [42]. Ultimately, these approaches help with request

 0

 20

 40

 60

 80

 0 50 100 150 200 250 300 0

 20

 40

 60

 80

Ko
pe

r/s

99
%

-il
e

Time

Hotspot Split (133s)
Throughput

Latency

(a) 16MB (disk mode).

 0

 20

 40

 60

 80

 0 50 100 150 200 250 300 0

 20

 40

 60

 80

Ko
pe

r/s

99
%

-il
e

Time

Hotspot Split (77s)
Throughput

Latency

(b) 4GB (disk mode).

Figure 10. Scale-out in a hotspot group using two different block
sizes and disks.

ordering bottlenecks, but the fundamental limitation of every
replica executing every operation still remains.

Another line of work [21, 25, 27] tries to take advantage
of multi-core servers to enhance performance. In [27] it is
proposed an approach where the application identifies the
commands that can execute concurrently without endanger-
ing determinism. In [25] a batch of requests are first exe-
cuted concurrently without any ordering constraints, but then
it is necessary to verify the state coherency between replicas.
If the state is not coherent, the commands are rolled back
and re-executed sequentially. Enabling concurrency may en-
hance the performance of SMR-based services, however, this
approach is limited by the number of cores on the replicas.
All these works could improve the performance of a single
replica group of CREST.

A third group of works aims to scale SMR-based services
by dividing its state among several partitions, implemented
by (mostly) independent RSMs [12, 20, 40, 41]. Bezerra et
al. [41] propose a technique for executing atomic operations
spanning multiple partitions still ensuring the Linearizability
of the SMR. In [40] it is proposed a storage architecture that
follows a partition approach and tolerates Byzantine failures.
This architecture enable transactions across partitions. Al-
though both [41] and [40] use partitioning to address the
scalability of SMR-based services, there is no support for
creating such partitions dynamically.

Scatter [20] is a consistent distributed key-value store
where key ranges are served by groups of replicas. Split
and merge reconfigurations are available, but the paper does
not mention how the state transfer between partitions is real-

10 2015/4/25

The creation of a 4GB
partition takes a bit

more than 2 minutes

Hotspot starts! Workload
increases 10x

30/6/18 IFIP WG 10.4 Meeting 41

Diversity Management

LAZARUS Backend

Control Plane

Replicas

Execution Plane

OSINT
sources

...

Crawler 1

Crawler 2

Crawler N

DB

DB

Clustering

Score

VM Builder

Configuration
Manager

DB

Service

BFT-lib

OS

LTU VMM

C

C

C

Clients

Malicious
Client

Deploy manager 3 Risk manager 2 Data manager 1

Figure 1. LAZARUS architecture.

2.1 System Model
LAZARUS requires a system model similar to previous works
on proactive recovery of BFT systems [11, 42, 44, 49] and
security services based on SDNs (Software-Defined Net-
works) [32]. More specifically, we consider a hybrid system
model composed of two parts (see Figure 1) with different
properties and assumptions:

• The Execution Plane – where the BFT service runs – is an
untrusted domain where processes are subject to Byzan-
tine failures and communicate through an asynchronous
network.2 This part hosts n replicas of the BFT service
such that at most f can be compromised at any given mo-
ment. Furthermore, each node that hosts a BFT replica
contains a Local Trusted Unit (LTU) that cannot be sub-
verted, and can only be subject to crash faults.

• The Control Plane – where LAZARUS runs – is a trusted
domain that manages the BFT service replicas deployed
on the Execution Plane. LAZARUS communicates with
each replica LTU through a synchronous link. Further-
more, it periodically accesses to external authenticated
OSINT sources on the internet to update its vulnerability
database. LAZARUS can only fail by crash, and such fail-
ures do not affect the BFT-replicated service in the Exe-
cution Plane as long as it is restarted before more than f

replicas of the service are simultaneously compromised.

Last but not least, we assume that the OSINT sources can-
not be compromised and controlled by a malicious adver-
sary. This assumption is partially substantiated by the fact
we are using only well-established and authenticated data
sources. Dealing with compromised and imprecise sources
is still an active area of research in threat intelligence sys-
tems (e.g., [35, 45]).

2.2 LAZARUS Architecture
Figure 1 shows LAZARUS architecture, which is composed
of three distinct modules, the Data manager, the Risk man-
ager, and the Deploy manager.

2 It should be noted that most BFT replication protocols require some degree
of synchrony for liveness (e.g., [7, 10]).

The Data manager (1) runs a set of data crawlers for
collecting security data from OSINT on the internet. There
is one crawler for each data source, and these crawlers are
organized in a pipeline, as one source is used to enrich the
previous one. At the end of the pipeline, the vulnerabilities
are stored in a database (DB). The Risk manager (2) uses
the information on the DB to assess the risk of the current
configuration and decides when an OS replacement should
take place. At this point it selects which OSes configurations
are expected to be more dependable than the one in use.
Finally, the Deploy manager (3) receives the information
from the Risk manager and deploys the OSes to run in the
replicated system. This component installs OSes in VMs,
installs and configures the software needed to run the service
replica, applies patches and updates to correct previously
detected weaknesses, and orchestrates the replacement of
replicas.

2.3 Clustering
NIST’s NVD (National Vulnerability Database) [40] is one
of the most authoritative data sources for disclosure of vul-
nerabilities and associated information [36]. NVD aggre-
gates vulnerability reports from more than 70 security com-
panies, advisory groups, and organizations, thus being the
most extensive vulnerability database on the web. All data is
made available as XML files, called data feeds, containing
the reported vulnerabilities on a given period. Each NVD
vulnerability receives a unique identifier from the Common
Vulnerabilities and Exposures (CVE) [39] and is enriched
with a short description, the list of products affected by the
vulnerability – as provided by Common Platform Enumera-
tion (CPE) [38], the date of the vulnerability publication,
and the Common Vulnerability Scoring System (CVSS)
score [15]. This score represents the vulnerability severity
taking into consideration several attributes, such as the at-
tack vector, privileges required, exploitability score, and the
security properties compromised (integrity, confidentiality,
or availability).

Previous studies on diversity solely count the number
of common vulnerabilities among different OSes, assum-
ing that less common vulnerabilities imply less probability

3

 1
 10

 100
 1000

 10000

 0 5 10 15 20 25 30
 0
 5
 10
 15
 20

R
is

k

vu
ln

s/
cl

us
te

rs

Days

risk
shared vulns
shared clusters

(a) Random

 0.01

 0.1

 1

 10

 0 5 10 15 20 25 30
 0

 2

 4
R

is
k

vu
ln

s/
cl

us
te

rs

Days
(b) LAZARUS

Figure 3. Execution phase for Random and LAZARUS OS configuration strategies.

Samba: On February 2, 2017, security researchers published de-
tails about a zero-day vulnerability in Server Message Block (SMB)
of Windows, affecting several versions such as 8.1, 10, Server 2012
R2, and Server 2016. Could cause a denial of service (DoS) condi-
tion when a client accesses a malicious SMB.
CVES: CVE-2017-0016
Wanna Cry: On Friday, May 12, 2017, the world was alarmed
to discover a widespread ransomware attack that hit organizations
in more than 100 countries. Based on a vulnerability in Windows’
SMB protocol (nicknamed EternalBlue), discovered by the NSA and
leaked by Shadow Brokers.
CVES: CVE-2017-0143, CVE-2017-0144, CVE-2017-0145,
CVE-2017-0146, CVE-2017-0147, CVE-2017-0148
PowerShell: Security feature bypass vulnerabilities in Device
Guard that could allow an attacker to inject malicious code into
a Windows PowerShell session.
CVES: CVE-2017-0219, CVE-2017-0173, CVE-2017-0215,
CVE-2017-0216, CVE-2017-0218
Stackclash: In its 2017 malware forecast, SophosLabs warned that
attackers would increasingly target Linux. The flaw, discovered by
researchers at Qualys, is in the memory management of several
operating systems and affects Linux, OpenBSD, NetBSD, FreeBSD
and Solaris.
CVES: CVE-2017-1000365, CVE-2017-1000366, CVE-2017-
1000367, CVE-2017-1000369, CVE-2017-1000370, CVE-2017-
1000370, CVE-2017-1000371, CVE-2017-1000372, CVE-2017-
1000373, CVE-2017-1000374, CVE-2017-1000375, CVE-2017-
1000376, CVE-2017-1000379, CVE-2017-1083, CVE-2017-1084,
CVE-2017-3629, CVE-2017-3630, CVE-2017-3631

Table 2. Notable attacks during 2017.

static, i.e., the OSes selected by random chance might end
up not being exploitable until the end of the run.

5. Performance Evaluation
In this section, we evaluate how LAZARUS’ affect the per-
formance of diverse replicated systems. First, we run the
BFT-SMaRt microbenchmarks in our virtualized environ-
ment using 17 OSes to understand how performance of a
BFT protocol varies with different OSes, and how they com-
pare with the performance of an homogeneous bare metal
setup. Second, we use the same benchmarks to measure the
performance of certain diverse setups. Third, we analyze the
performance of the system along LAZARUS-managed recon-

 0
 20
 40
 60
 80

 100

wannacry smb powershell stackclash all

C
om

pr
om

is
ed

(%
) Lazarus

0
%

0
%

0
%

0
%

0
%

Static

1
2
%

1
1
%

2
%

1
9
%

3
0
%

Equal

1
7
%

1
6
%

8
%

3
%

4
%

Random

9
7
%

9
7
%

8
0
% 1

0
0
%

1
0
0
%

Figure 4. Compromised runs with notable attacks.

figurations. Fourth, we measure the time that each OS takes
to boot. Finally, we evaluate the performance of three BFT
applications running in the LAZARUS infrastructure.

These experiments were conducted in a cluster of Dell
PowerEdge R410 machines, where each machine has 32
GB of memory and two quad-core 2.27 GHz Intel Xeon
E5520 processor with hyper-threading, i.e., supporting 16
hardware threads on each node. The machines communicate
through a gigabit Ethernet network. Each server runs Ubuntu
Linux 14.04 LTS (3.13.0-32-generic Kernel) and VirtualBox
5.1.28, for supporting the execution of VMs with different
OSes. Additionally, Vagrant 2.0.0 was used as the provision-
ing tool to automate the deployment process. In all experi-
ments, BFT-SMaRt v1.1 was configured with four replicas
(f = 1), with one replica per physical machine.

Table 3 lists the 17 OSes used in the experiments and the
number of cores used by their corresponding VMs. These
values correspond to the maximum number of CPUs sup-
ported by VirtualBox with the particular OS. The table also
shows the JVMs used in each OS, and the amount of mem-
ory supported by each of these VMs. Given the limitations
of the VMs we were able to setup in our environment, all
experiments conducted in our homogeneous bare metal en-
vironment (BM) were configured to make BFT-SMaRt repli-
cas use only four cores of the machines, to establish a fair
baseline.

5.1 Throughput with Homogeneous Replicas
We start by running the BFT-SMaRt microbenchmark using
the same OS in all replicas. The microbenchmark considers
an empty service that receives and replies variable size pay-
loads, and is commonly used to evaluate BFT state-machine
replication protocols (e.g., [4, 5, 7, 10, 34]). Here, we con-

8

Calculates the risk of
having a common

weakness two replicas

Fetch vuln. & exploit info
from NVD, ExploitDB, etc.

Exchange one or more
replicas to decrease the risk

of common weaknesses.

30/6/18 IFIP WG 10.4 Meeting 42

Diversity Management

10k
20k
30k
40k
50k
60k

BM UB14
UB16
UB17
OS42
FE24

FE25

FE26

DE7

DE8

W
10

W
S12

FB10

FB11

SO10
SO11
OB60
OB61

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

0/0
1024/1024

Figure 5. Microbenchmark for 0/0 and 1024/1024 (request/reply) for 17 homogeneous configurations running different OSes.

ID Name Cores JVM Mem.
UB14 Ubuntu 14.04 4 Java Oracle 1.8.0 144 15GB
UB16 Ubuntu 16.04 4 Java Oracle 1.8.0 144 15GB
UB17 Ubuntu 17.04 4 Java Oracle 1.8.0 144 15GB
OS42 OpenSuse 42.1 4 Openjdk 1.8.0 141 15GB
FE24 Fedora 24 4 Openjdk 1.8.0 141 15GB
FE25 Fedora 25 4 Openjdk 1.8.0 141 15GB
FE26 Fedora 26 4 Openjdk 1.8.0 141 15GB
DE7 Debian 7 4 Java Oracle 1.8.0 151 15GB
DE8 Debian 8 4 Openjdk 1.8.0 131 15GB
W10 Windows 10 4 Java Oracle 1.8.0 151 1GB

WS12 Windows Server 2012 4 Java Oracle 1.8.0 151 1GB
FB10 FreeBSD 10 4 Openjdk 1.8.0 144 15GB
FB11 FreeBSD 11 4 Openjdk 1.8.0 144 15GB
SO10 Solaris 10 1 Java Oracle 1.8.0 141 15GB
SO11 Solaris 11 1 Java Oracle 1.8.0 05 15GB
OB60 OpenBSD 6.0 1 Openjdk 1.8.0 72 1GB
OB61 OpenBSD 6.1 1 Openjdk 1.8.0 121 1GB

Table 3. The different OSes used in the experiments and the
configurations of their VMs and JVMs.

sider the 0/0 (0-byte requests and response) and 1024/1024
(1024-bytes requests and responses) workloads. The exper-
iments employ up to 1400 client processes spread on seven
machines to create the workload.

Results: Figure 5 shows the throughput of each OS run-
ning the benchmark for both loads. To establish a baseline,
we executed the benchmark in our bare metal Ubuntu, with-
out LAZARUS virtualization environment.

The results show that there are some significant differ-
ences between running the system on top of different OSes.
This difference is bigger for the 0/0 workload as it is much
more CPU intensive than the 1024/1024 workload. Ubuntu,
OpenSuse, and Fedora OSes are well supported by our virtu-
alization environment and achieved a throughput around 40k
and 10k for the 0/0 and 1024/1024 workloads, which cor-
responds to approx. 66% and 75% of the bare metal results,
respectively. For Debian, Windows, and FreeBSD VMs, the
results are much worse for the CPU intensive 0/0 workloads,
but close to the previous group for 1024/1024. Finally, sin-
gle core VMs running Solaris and OpenBSD reached no
more than 3000 ops/sec with both workloads.

These results show that limitations on how virtualiza-
tion platforms supporting different OSes (and vice-versa)
strongly limit the performance of certain systems in our con-
figurations.

0

5k

10k

15k

20k

0/0 1024/1024Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

[UB16, UB15, FE24, OS42]

3
9
4
4
5

[UB16, W10, SO10, OB61]
[OB60, OB61, SO10, S11]

Figure 6. Microbenchmark for 0/0 and 1024/1024 (re-
quest/reply) for three diverse OS configurations.

5.2 Throughput with Diverse Replicas
The previous results show the performance of BFT-SMaRt
when running on top of different OSes, but with all replicas
running in the same environment. In this experiment, we
evaluate three diverse sets of replicas, one with the four
fastest OSes (Ubuntu 17.04, Ubuntu 16.04, Fedora 24, and
OpenSuse 42), another with one replica of each OS family
(Ubuntu 16, Windows 10, Solaris 10, and OpenBSD 6.1),
and a last one with the four slowest OSes (OpenBSD 6.0,
OpenBSD 6.1, Solaris 10, and Solaris 11). The idea is to
set and upper and lower bound on all possible diverse sets
throughput.

Results: Figure 6 shows that throughput drops from 39k
to 6k for the 0/0 workload (65% and 10% of the bare metal
performance), and from 11.5k to 2.5k for the 1024/1024
workload (82% and 18% of the bare metal performance).
When comparing these two sets with the non-diverse sets
of Figure 5, the fastest set is in 7th, and slowest set is in
16th. It is worth to stress that the slowest set is composed of
OSes that only support a single CPU – due to the VirtualBox
limitations – therefore the low performance is somewhat ex-
pected. The set with OSes from different families is very
close to the slowest set, as two of the replicas use single-CPU
OSes, and BFT-SMaRt always make progress in the speed of
the 3rd fastest replica (a Solaris VM), since a Byzantine quo-
rum of three replicas is needed for ordering requests. These
results show that running LAZARUS with current virtualiza-
tion technology results in a significant performance varia-
tion, depending on the configurations selected by the sys-
tem. This opens interesting avenues for future work on pro-

9

10k
20k
30k
40k
50k
60k

BM UB14
UB16
UB17
OS42
FE24

FE25

FE26

DE7

DE8

W
10

W
S12

FB10

FB11

SO10
SO11
OB60
OB61

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

0/0
1024/1024

Figure 5. Microbenchmark for 0/0 and 1024/1024 (request/reply) for 17 homogeneous configurations running different OSes.

ID Name Cores JVM Mem.
UB14 Ubuntu 14.04 4 Java Oracle 1.8.0 144 15GB
UB16 Ubuntu 16.04 4 Java Oracle 1.8.0 144 15GB
UB17 Ubuntu 17.04 4 Java Oracle 1.8.0 144 15GB
OS42 OpenSuse 42.1 4 Openjdk 1.8.0 141 15GB
FE24 Fedora 24 4 Openjdk 1.8.0 141 15GB
FE25 Fedora 25 4 Openjdk 1.8.0 141 15GB
FE26 Fedora 26 4 Openjdk 1.8.0 141 15GB
DE7 Debian 7 4 Java Oracle 1.8.0 151 15GB
DE8 Debian 8 4 Openjdk 1.8.0 131 15GB
W10 Windows 10 4 Java Oracle 1.8.0 151 1GB

WS12 Windows Server 2012 4 Java Oracle 1.8.0 151 1GB
FB10 FreeBSD 10 4 Openjdk 1.8.0 144 15GB
FB11 FreeBSD 11 4 Openjdk 1.8.0 144 15GB
SO10 Solaris 10 1 Java Oracle 1.8.0 141 15GB
SO11 Solaris 11 1 Java Oracle 1.8.0 05 15GB
OB60 OpenBSD 6.0 1 Openjdk 1.8.0 72 1GB
OB61 OpenBSD 6.1 1 Openjdk 1.8.0 121 1GB

Table 3. The different OSes used in the experiments and the
configurations of their VMs and JVMs.

sider the 0/0 (0-byte requests and response) and 1024/1024
(1024-bytes requests and responses) workloads. The exper-
iments employ up to 1400 client processes spread on seven
machines to create the workload.

Results: Figure 5 shows the throughput of each OS run-
ning the benchmark for both loads. To establish a baseline,
we executed the benchmark in our bare metal Ubuntu, with-
out LAZARUS virtualization environment.

The results show that there are some significant differ-
ences between running the system on top of different OSes.
This difference is bigger for the 0/0 workload as it is much
more CPU intensive than the 1024/1024 workload. Ubuntu,
OpenSuse, and Fedora OSes are well supported by our virtu-
alization environment and achieved a throughput around 40k
and 10k for the 0/0 and 1024/1024 workloads, which cor-
responds to approx. 66% and 75% of the bare metal results,
respectively. For Debian, Windows, and FreeBSD VMs, the
results are much worse for the CPU intensive 0/0 workloads,
but close to the previous group for 1024/1024. Finally, sin-
gle core VMs running Solaris and OpenBSD reached no
more than 3000 ops/sec with both workloads.

These results show that limitations on how virtualiza-
tion platforms supporting different OSes (and vice-versa)
strongly limit the performance of certain systems in our con-
figurations.

0

5k

10k

15k

20k

0/0 1024/1024Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

[UB16, UB15, FE24, OS42]

3
9
4
4
5

[UB16, W10, SO10, OB61]
[OB60, OB61, SO10, S11]

Figure 6. Microbenchmark for 0/0 and 1024/1024 (re-
quest/reply) for three diverse OS configurations.

5.2 Throughput with Diverse Replicas
The previous results show the performance of BFT-SMaRt
when running on top of different OSes, but with all replicas
running in the same environment. In this experiment, we
evaluate three diverse sets of replicas, one with the four
fastest OSes (Ubuntu 17.04, Ubuntu 16.04, Fedora 24, and
OpenSuse 42), another with one replica of each OS family
(Ubuntu 16, Windows 10, Solaris 10, and OpenBSD 6.1),
and a last one with the four slowest OSes (OpenBSD 6.0,
OpenBSD 6.1, Solaris 10, and Solaris 11). The idea is to
set and upper and lower bound on all possible diverse sets
throughput.

Results: Figure 6 shows that throughput drops from 39k
to 6k for the 0/0 workload (65% and 10% of the bare metal
performance), and from 11.5k to 2.5k for the 1024/1024
workload (82% and 18% of the bare metal performance).
When comparing these two sets with the non-diverse sets
of Figure 5, the fastest set is in 7th, and slowest set is in
16th. It is worth to stress that the slowest set is composed of
OSes that only support a single CPU – due to the VirtualBox
limitations – therefore the low performance is somewhat ex-
pected. The set with OSes from different families is very
close to the slowest set, as two of the replicas use single-CPU
OSes, and BFT-SMaRt always make progress in the speed of
the 3rd fastest replica (a Solaris VM), since a Byzantine quo-
rum of three replicas is needed for ordering requests. These
results show that running LAZARUS with current virtualiza-
tion technology results in a significant performance varia-
tion, depending on the configurations selected by the sys-
tem. This opens interesting avenues for future work on pro-

9

10k
20k
30k
40k
50k
60k

BM UB14
UB16
UB17
OS42
FE24

FE25

FE26

DE7

DE8

W
10

W
S12

FB10

FB11

SO10
SO11
OB60
OB61

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

0/0
1024/1024

Figure 5. Microbenchmark for 0/0 and 1024/1024 (request/reply) for 17 homogeneous configurations running different OSes.

ID Name Cores JVM Mem.
UB14 Ubuntu 14.04 4 Java Oracle 1.8.0 144 15GB
UB16 Ubuntu 16.04 4 Java Oracle 1.8.0 144 15GB
UB17 Ubuntu 17.04 4 Java Oracle 1.8.0 144 15GB
OS42 OpenSuse 42.1 4 Openjdk 1.8.0 141 15GB
FE24 Fedora 24 4 Openjdk 1.8.0 141 15GB
FE25 Fedora 25 4 Openjdk 1.8.0 141 15GB
FE26 Fedora 26 4 Openjdk 1.8.0 141 15GB
DE7 Debian 7 4 Java Oracle 1.8.0 151 15GB
DE8 Debian 8 4 Openjdk 1.8.0 131 15GB
W10 Windows 10 4 Java Oracle 1.8.0 151 1GB

WS12 Windows Server 2012 4 Java Oracle 1.8.0 151 1GB
FB10 FreeBSD 10 4 Openjdk 1.8.0 144 15GB
FB11 FreeBSD 11 4 Openjdk 1.8.0 144 15GB
SO10 Solaris 10 1 Java Oracle 1.8.0 141 15GB
SO11 Solaris 11 1 Java Oracle 1.8.0 05 15GB
OB60 OpenBSD 6.0 1 Openjdk 1.8.0 72 1GB
OB61 OpenBSD 6.1 1 Openjdk 1.8.0 121 1GB

Table 3. The different OSes used in the experiments and the
configurations of their VMs and JVMs.

sider the 0/0 (0-byte requests and response) and 1024/1024
(1024-bytes requests and responses) workloads. The exper-
iments employ up to 1400 client processes spread on seven
machines to create the workload.

Results: Figure 5 shows the throughput of each OS run-
ning the benchmark for both loads. To establish a baseline,
we executed the benchmark in our bare metal Ubuntu, with-
out LAZARUS virtualization environment.

The results show that there are some significant differ-
ences between running the system on top of different OSes.
This difference is bigger for the 0/0 workload as it is much
more CPU intensive than the 1024/1024 workload. Ubuntu,
OpenSuse, and Fedora OSes are well supported by our virtu-
alization environment and achieved a throughput around 40k
and 10k for the 0/0 and 1024/1024 workloads, which cor-
responds to approx. 66% and 75% of the bare metal results,
respectively. For Debian, Windows, and FreeBSD VMs, the
results are much worse for the CPU intensive 0/0 workloads,
but close to the previous group for 1024/1024. Finally, sin-
gle core VMs running Solaris and OpenBSD reached no
more than 3000 ops/sec with both workloads.

These results show that limitations on how virtualiza-
tion platforms supporting different OSes (and vice-versa)
strongly limit the performance of certain systems in our con-
figurations.

0

5k

10k

15k

20k

0/0 1024/1024Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

[UB16, UB15, FE24, OS42]

3
9

4
4

5

[UB16, W10, SO10, OB61]
[OB60, OB61, SO10, S11]

Figure 6. Microbenchmark for 0/0 and 1024/1024 (re-
quest/reply) for three diverse OS configurations.

5.2 Throughput with Diverse Replicas
The previous results show the performance of BFT-SMaRt
when running on top of different OSes, but with all replicas
running in the same environment. In this experiment, we
evaluate three diverse sets of replicas, one with the four
fastest OSes (Ubuntu 17.04, Ubuntu 16.04, Fedora 24, and
OpenSuse 42), another with one replica of each OS family
(Ubuntu 16, Windows 10, Solaris 10, and OpenBSD 6.1),
and a last one with the four slowest OSes (OpenBSD 6.0,
OpenBSD 6.1, Solaris 10, and Solaris 11). The idea is to
set and upper and lower bound on all possible diverse sets
throughput.

Results: Figure 6 shows that throughput drops from 39k
to 6k for the 0/0 workload (65% and 10% of the bare metal
performance), and from 11.5k to 2.5k for the 1024/1024
workload (82% and 18% of the bare metal performance).
When comparing these two sets with the non-diverse sets
of Figure 5, the fastest set is in 7th, and slowest set is in
16th. It is worth to stress that the slowest set is composed of
OSes that only support a single CPU – due to the VirtualBox
limitations – therefore the low performance is somewhat ex-
pected. The set with OSes from different families is very
close to the slowest set, as two of the replicas use single-CPU
OSes, and BFT-SMaRt always make progress in the speed of
the 3rd fastest replica (a Solaris VM), since a Byzantine quo-
rum of three replicas is needed for ordering requests. These
results show that running LAZARUS with current virtualiza-
tion technology results in a significant performance varia-
tion, depending on the configurations selected by the sys-
tem. This opens interesting avenues for future work on pro-

9

30/6/18 IFIP WG 10.4 Meeting 43

BFT-SMaRt as a Blockchain

• What to change?
– Durable Logging -> Blockchain
– State machine service-> smart contract
– BFT reconfiguration -> Churn/committee

management
– VP-consensus -> Scalable VP-consensus

30/6/18 IFIP WG 10.4 Meeting 44

Questions?

• To know more:
– BFT-SMaRt: http://bft-smart.github.io/library/
– Bessani et al. State Machine Replication for the Masses with BFT-SMaRt. IEEE/IFIP DSN’14.
– Bessani et al. On the Efficiency of Durable State Machine Replication. USENIX ATC’13.
– Sousa, Bessani. Separating the WHEAT from the Chaff: An Empirical Design for Geo-replicated

State Machines. IEEE SRDS’15.
– Sousa et al. A Byzantine Fault-Tolerant Ordering Service for Hyperledger Fabric Blockchain

Platform. IEEE/IFIP DSN’18.

30/6/18 IFIP WG 10.4 Meeting 45

http://bft-smart.github.io/library/

