Fault-Injection on a Haptic Rendering
Algorithm In the Raven Surgical Robot

Keywhan Chung, Xiao Li, Zbigniew T. Kalbarczyk, Ravishankar K. lyer, and Thenkurussi Kesavadas
University of Illinois at Urbana-Champaign

1L ILLINOIS

Electrical & Computer Engineering
COLLEGE OF ENGINEERING

Introduction and Motivation

= Surgical robot widely adopted in medicine

= Raven-Ill: an open-architecture surgical robot
— Built for research purposes
— Based on open standards (Linux, ROS)
— Hence, easy to add/upgrade/swap components and advance relevant technologies

= How about reliability and security?
— What problems can the robot and its modules face?
— How robust against them?
— Any potential security threats?

Evaluation through fault injection

- Sample application: Haptic Rendering Module designed for Raven-Il

- Algorithm heavily rely on data from the image sensor

- Inject faults into the message from “image sensor node” to “control algorithm”

ECE ILLINOIS

Environment Setup of Raven with the Haptic Rendering Engine

Raven-Il + Haptic Rendering Engine

visualized
simulation

sensor \kinect/BGR (
] > roscore »
Kinect kinect/Depthk

A
BGR : omni_incr
of operating omni_force*.
table 1
IR depth Force feedback
of operating 5
table B Operator
movement
KINECT
image sensor OMNI haptic device
for user input
€ ROS message subscription through a TCP connection

—— ROS message publication through a TCP connection
—— H/W - ROS connection

RAVEN-II

ECE ILLINOIS

] |

Fault Injection Setup img_msg_d.datalxshift] | 0

. [e o e e e e =1
'viz 1 i
I img_msg_d.data[X] 0 H
1 1
U L]
omni_client < Memory
roscore
sensorKinect.cpp
while (ros::ok()){
* cap.grap(); // capture a frame from the image sensor
kinectSensor K cap.retrieve(bgrimage, CV_CAP_OPENNI_BGR_IMAGE);
A cap.retrieve(bgrimage, CV_CAP_OPENNI_DEPTH_MAP);
GDB through i (/ conv.ert the image to a RQS message i
Fault#1 TCP connection ;_Ime_bridge d-tolmageMsg(ime M8t preakpoint
breakpoint: .
sensorKinect.cpp:300) // publish the ROS message to roscore
| command: | > InJECtor pub2.publish(img_msg_d);
setimg_msg_d.data[X]
= img_msg_d.data[X-shift]

ECE ILLINOIS

Fault I: Loss of Granularity in Depth Map

= Reliability Issue: Message can loose information during transition:
e.g., hardware failure, network problem, etc.

= Leads to loss of granularity

= Fault Model:

— Neutralize the depth of a portion of pixels chosen at random

1(1(1|0]|O0 o(1(1|/01|0
1(1(1|0]|O0 £ £1{0|1|00
1(1(1|0]|0) 1(1(0[(0|0
olo|ofo]o] . ° olofofo]o
0/|0|0|0]|O0 0 ety 3, - 0(0(0|0]|O
Original Depth Map Corrupted Depth Map
(ground truth) (actual input for algorithm)

ECE ILLINOIS

Fault I: Injection Result

Tip contact

successfully

rendered & Robot arm

blocked | penetrated the

penetration object
Rendered Rendered

force feedback M 3 = R @ force feedback

. - (horizontal not
without Fault Injected with Fault Injected vertical)

= Inreality: no blockage at surface
— Damage underlying surface (e.g., patient tissue)
— Robot suffers a heavy load without notice

ECE ILLINOIS

Fault II: Shifted Depth Map

= Security Threat: Attacker can manipulate the message w/ malicious intent

= Fault Model:

— Shift the memory contents as if the object has moved

. Object SHI. by 2 pixels?

111]1/0]0 % 0|0|1|1(1
1(1(1|0]|O0 /0|0 |1]|1|1
1/1|1/0]0 lololal1]1
0|0|0|0|O]| - 0/|0|0|0]|O0
OOOOOOMeIfMa 0/|0|0|0]|O0
Original Depth Map Shifted Depth Map
(ground truth) (actual input for algorithm)

ECE ILLINOIS

Fault II: Injection Result

Volume added to

Object under table surface

operation rendered
in 3D while
operating table
remaining flat

Object under
operation flattened
(same depth level
as table)

without Fault Iﬁjected with Fault Injected

= |f we also corrupted the BGR message,
can obfuscate the operator to think that the object is in a different location

ECE ILLINOIS

Conclusion

= Using fault injection,
demonstrated possibility of neutralizing a haptic feedback engine:

— Reliability Issue: hardware failure in image source or network issue
— Security Threat: intentional manipulation of input data

= Need validation of input source and detection of corruption

= [Future Work:

— Advances in fault models

— Additional source of faults (e.g., corrupt the “omni_force” message)
— Vulnerabilities in applications and the ROS framework

— Protection against known faults

ECE ILLINOIS

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9

