
Fault-Injection on a Haptic Rendering 
Algorithm in the Raven Surgical Robot
Keywhan Chung, Xiao Li, Zbigniew T. Kalbarczyk, Ravishankar K. Iyer, and Thenkurussi Kesavadas
University of Illinois at Urbana-Champaign



 Surgical robot widely adopted in medicine
 Raven-II: an open-architecture surgical robot

– Built for research purposes
– Based on open standards (Linux, ROS)
– Hence, easy to add/upgrade/swap components and advance relevant technologies

 How about reliability and security?
– What problems can the robot and its modules face?
– How robust against them?
– Any potential security threats?

Introduction and Motivation

2

Evaluation through fault injection
- Sample application: Haptic Rendering Module designed for Raven-II
- Algorithm heavily rely on data from the image sensor
- Inject faults into the message from “image sensor node” to “control algorithm”



Raven-II

Environment Setup of Raven with the Haptic Rendering Engine

roscore
sensor
Kinect

omni
_client

rviz

ROS message subscription through a TCP connection
ROS message publication through a TCP connection
H/W - ROS connection

omni_force
omni_incr

kinect/BGR

OMNI haptic device
for user input

KINECT 
image sensor

visualized 
simulation

RAVEN-II

BGR
of operating 

table

IR depth 
of operating 

table

Force feedback

Operator 
movement

+ Haptic Rendering Engine

kinect/Depth



Fault Injection Setup

4

roscore

kinectSensor

omni_client

rviz

Injector
breakpoint: 
sensorKinect.cpp:300
command: 
set img_msg_d.data[X] 
= img_msg_d.data[X-shift]
…

Fault # 1
GDB through 
TCP connection

sensorKinect.cpp
...
while (ros::ok()){

cap.grap(); // capture a frame from the image sensor
cap.retrieve(bgrImage, CV_CAP_OPENNI_BGR_IMAGE);
cap.retrieve(bgrImage, CV_CAP_OPENNI_DEPTH_MAP);
…
// convert the image to a ROS message
img_bridge_d.toImageMsg(img_msg_d);
…
// publish the ROS message to roscore
pub2.publish(img_msg_d);
…

}
…

img_msg_d.data[X-shift]

……

img_msg_d.data[X]

Memory

0

1500

breakpoint



 Reliability Issue: Message can loose information during transition:
e.g., hardware failure, network problem, etc.

 Leads to loss of granularity
 Fault Model:

– Neutralize the depth of a portion of pixels chosen at random

Fault I: Loss of Granularity in Depth Map

5

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 0 0
0 0 0 0 0

0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0

Original Depth Map
(ground truth)

Corrupted Depth Map
(actual input for algorithm)



with Fault Injected

 In reality: no blockage at surface
– Damage underlying surface (e.g., patient tissue)
– Robot suffers a heavy load without notice

Fault I: Injection Result

6

Tip contact 
successfully 
rendered & 
blocked 
penetration

Rendered 
force feedback

without Fault Injected

Robot arm 
penetrated the 
object

Rendered 
force feedback 
(horizontal not 
vertical)



Fault II: Shifted Depth Map

7

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 0 0
0 0 0 0 0

Original Depth Map 
(ground truth)

 Security Threat: Attacker can manipulate the message w/ malicious intent

 Fault Model:
– Shift the memory contents as if the object has moved

0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0

Shifted Depth Map
(actual input for algorithm)

Object SHIFTED by 2 pixels?



with Fault Injected

Fault II: Injection Result

8

without Fault Injected

Object under 
operation rendered 
in 3D while 
operating table 
remaining flat

Volume added to 
table surface

Object under 
operation flattened 
(same depth level 
as table)

 If we also corrupted the BGR message,
can obfuscate the operator to think that the object is in a different location



 Using fault injection, 
demonstrated possibility of neutralizing a haptic feedback engine:

– Reliability Issue: hardware failure in image source or network issue
– Security Threat: intentional manipulation of input data

 Need validation of input source and detection of corruption

 Future Work:
– Advances in fault models
– Additional source of faults (e.g., corrupt the “omni_force” message)
– Vulnerabilities in applications and the ROS framework
– Protection against known faults

Conclusion

9


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9

