

Probabilistic Analysis of Safe and Unsafe Disagreement in Leader Election Protocols for Virtual Traffic Lights

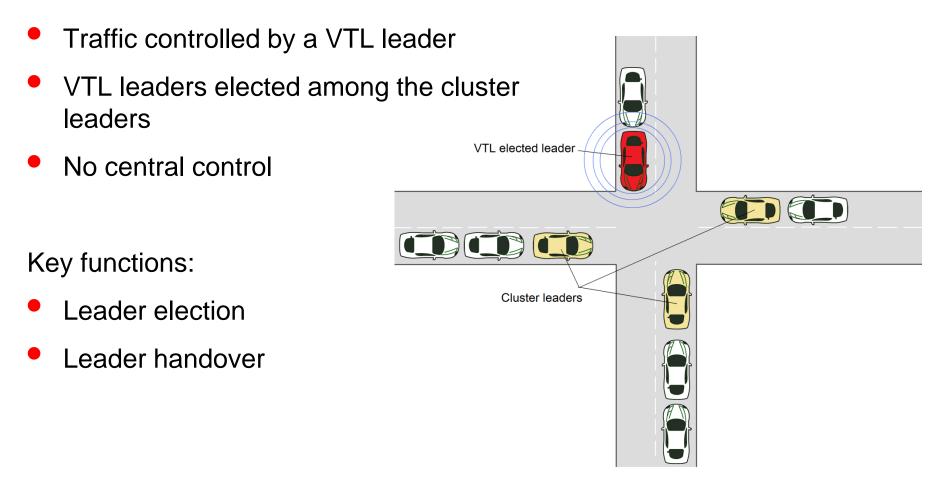
Johan Karlsson

Chalmers University of Technology

Göteborg, Sweden

Joint work with Negin Fathollahnejad and Raul Barbosa

Research report – IFIP WG 10.4 Meeting, Clervaux, Luxembourg, July 1, 2018



What is a Virtual Traffic Light (VTL)?

- A Virtual Traffic Light is a self-organizing traffic control system.
- It allows road vehicles passing an intersection to implement the function of a traffic light without a roadside installation or access to a wireless internet connection.
- Relies entirely on wireless vehicle-to-vehicle (V2V) communication.
- No central control

MFRS

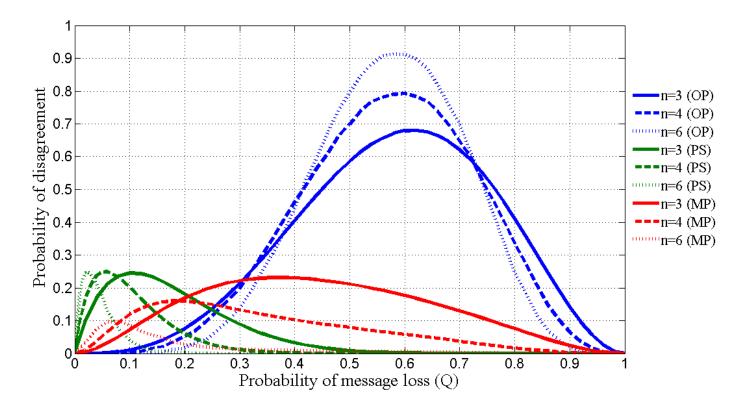
Challenges in designing Leader Election Protocols for VTL:s

- It is not feasible to assume an upper bound on the number of messages that can be lost during the execution of a leader election protocol over a V2V wireless network.
- Consensus cannot be guaranteed in presence of a "high" number of message losses.
 - Impossibility result by Santoro & Widmayer, 1989
- The number of participating nodes and their identities is initially unknown to all nodes => a node (vehicle) may have an incorrect view of the system size n.

Assumptions

- Fault model: receive omissions
 - Message losses on the receiver side
 - Constant failure probability of all message receptions
- System model: synchronous distributed system
 - Round based communication
 - The number of communication rounds is *fixed at design time*
 - Each node broadcasts one message per round
- A node (vehicle) either *selects a leader* or *aborts*
- A node may have an incorrect view of the system size n.

Three protocols


- Whether a node (vehicle) will select a leader or abort is determined by a decision criterion executed as the final step in each instance of the protocol.
- We constructed three protocols with different decision criterions, which we denote as
 - Optimistic
 - Pessimistic
 - Moderately pessimistic
- All three protocols rely on a *potentially unreliable oracle* to determine the system size *n*.

Possible system-wide outcomes

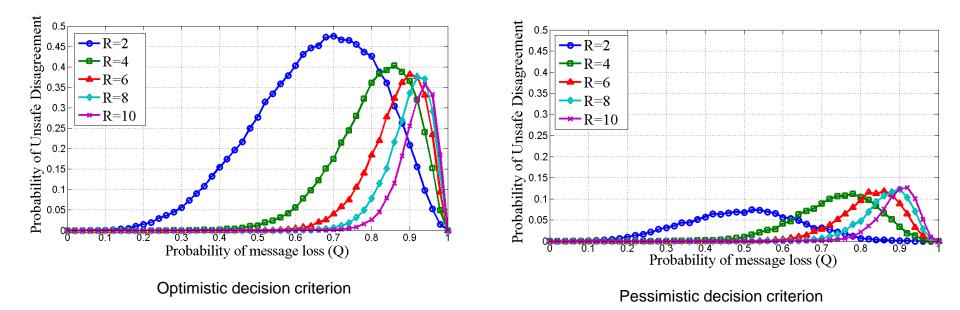
- Agreement on a leader all nodes select the same leader.
- Agreement on abort all nodes decide to abort due to insufficient information (too many messages have been lost).
- Disagreement some nodes decide to abort and others decide on a leader.
- We can categorize disagreement in two main classes:
 - Safe disagreement some nodes decides to abort and other nodes decide on *the same leader*.
 - Unsafe disagreement at least two nodes decide on different leaders.

No. of nodes (*n*) = 3, 4, 6, R=2, receive omissions, perfect oracles => no unsafe disagreement

n = no. of nodes (cluster leaders)

 \mathbf{R} = no. of communication rounds

CHALMERS


Q = probability of message lost at receiver (receive omissions)

Perfect oracles = all nodes have the correct view of the system size *n*.

OP = optimistic decision criterion
PS = pessimistic decision criterion
MP = moderately pessimistic decision criterion

n = 4 (true value), all oracles incorrectly assume a system size of 2.

n = no. of nodes (cluster leaders)

- **R** = no. of communication rounds
- **Q** = probability of message lost at receiver (receive omissions)

Non-perfect oracles = not all nodes have the correct view of the system size *n*.

Conclusions

- We introduced the concepts of safe and unsafe disagreement in V2V wireless networks.
- Unsafe disagreement does not occur *if all nodes have a correct view* of the system size *n* (= perfect oracles).
- Unsafe disagreement does not occur *if one or more* oracles overestimate and no oracle underestimate the size of the system.
- Unsafe disagreement occurs only if one or more oracles underestimate the size of the system.