
SCONE - SECURE CONTAINERS
OSDI2016, EuroSys2017

Christof Fetzer, TU Dresden, Germany

CC0
1

MOTIVATION
➤ Role: Service Provider

➤ Data is valuable, we need to protect

➤ confidentiality, and

➤ integrity

THREAT MODEL
- not trusting cloud nor development machines -

THREAT MODEL (PARTIAL)
➤ System administrator not trusted

➤ but system administrators have root access and

➤ e.g., can dump process main memory with all keys

➤ We cannot trust

➤ integrity / confidentiality of input nor output

4

EXECUTIVE SUMMARY
➤ SCONE platform:

➤ simplifies running applications in Intel SGX enclaves

➤ focus on ease of use

➤ transparent attestation and configuration

➤ no application code changes

my_app SCONE my_app

native runs in enclave

> my_app > SCONE_ALPINE=1 my_app

secrets

SCONE GENERAL
APPROACH

DIVIDE AND CONQUER

untrusted

cl
ou

d
pr

ov
id

er
se

rv
ic

e
pr

ov
id

er

trusted

cloud-native application

cloud services

integrity  
& confidentiality (micro-)services deployed in containers

7

availability

EACH MICROSERVICE RUNS IN A CONTAINER

untrusted

cl
ou

d
pr

ov
id

er
se

rv
ic

e
pr

ov
id

er

cloud-native application

availability

standard containers (untrusted)

µ-service … µ-service

cloud services

e.g., no protection needed for  
services accessing encrypted data only

8

TOP-LEVEL ARCHITECTURE

µ-service

SGX enclave

secure containers (trusted)

cl
ou

d
pr

ov
id

er
se

rv
ic

e
pr

ov
id

er

standard containers (untrusted)

… µ-service

SGX enclave

µ-service … µ-service

cloud-native application

untrusted

availability

cloud services

9

CAAS, IAAS (OR MAAS)

Operating system

µ-service

SGX enclave

secure containers (trusted)

Virtual Machine

Operating system

Virtual Machine

Operating system

Virtual Machine

…

…
IaaS

CaaS
Container Engine Container Engine Container Engine…

Container Swarm

untrusted

cl
ou

d
pr

ov
id

er
se

rv
ic

e
pr

ov
id

er

untrusted

standard containers (untrusted)

… µ-service

SGX enclave

µ-service … µ-service

cloud-based applicationintegrity  
& confidentiality

10

APPLICATION-ORIENTED SECURITY VS CLOUD SECURITY

µ-service

SGX enclave

secure containers (trusted)

host …

Container Swarm

untrusted

cl
ou

d
se

cu
ri

ty

untrusted

standard containers (untrusted)

… µ-service

SGX enclave

µ-service … µ-service

SecureCloud-based application

SGX host SGX host host …

ap
pl

ic
at

io
n-

or
ie

nt
ed
 

se
cu

ri
ty

av
ai

la
bi

lit
y

in
te

gr
ity

 &
  

co
nf

id
en

tia
lit

y

11

at
te

st
at

io
n

at
te

st
at

io
n

TO PARTITION OR NOT TO
PARTITION

- single processes -

DEFENDER’S DILEMMA
➤ Attackers:

➤ success by exploiting a
single vulnerability

➤ Defender:

➤ must protect against every
vulnerability

➤ not only in application

➤ millions of lines of source
code

CC0

cloud software stack

Hypervisor

Operating system

Application
Cl

ou
d

St
ac

k

System libraries

Application libraries
M

aa
S

node

…

13

VULNERABILITIES
➤ Coverity reports:

➤ 1 defect per 1700 lines of code
➤ Kernel self protection project:

➤ 500 security bugs fixed in Linux during the last 5 years

➤ each bug stayed about 5 years inside kernel
➤ Coverity:

➤ quality of closed source software is not better than open
source software

➤ MacOS: no root password needed

[Coverity] Open Source Report 2014 - Coverity, go.coverity.com/rs/157-LQW.../2014-Coverity-Scan-Report.pdf

[KSPP] Kees Cook, The State of Kernel Self Protection Project, Linux Security Summit (LSS), 2016
14

EXAMPLE
➤ Web Server (nginx)

➤ Configuration:

➤ TLS certificate (private key)

➤ config file

➤ …

➤ WWW files:

➤ must only visible to
authorised clients

web server
(nginx)

TLS

cert wwwfiles

process

THREAT MODEL?
➤ Attacker has root access

➤ controls OS

➤ controls Hypervisor

➤ Attacker can

➤ read/modify all files

➤ can read/modify memory of
processes

➤ can see all network traffic

web server
(nginx)

TLS

cert www

OS

dump  
memory

(root)

node

hypervisor

SHOULD WE PARTITION NGINX?

➤ We need to protect certificate!

➤ must not leak

➤ TLS should be protected!nginx
TLS

cert www

T
L
S

could impersonate original  
website if not protected

[Glamdring, Usenix ATC 2017]

SHOULD WE PARTITION NGINX?

➤ We need to protect certificate!

➤ must not leak

➤ TLS should be protected!

➤ Attacker does not need cert:

➤ establish connections via
protected TLS stack

➤ how to protect against this?

➤ how to automate the
protection?

nginx
TLS

cert www

T
L
S

API

SHOULD WE PARTITION NGINX?

➤ We need to protect certificate!

➤ must not leak

➤ TLS should be protected!

➤ We need to encrypt www files

➤ to ensure confidentiality

➤ to ensure integrity

nginx
TLS

cert www

T
L
S

read/  
modify

SHOULD WE PARTITION NGINX?

➤ We need to protect certificate!

➤ must not leak

➤ TLS should be protected!

➤ We need to encrypt www files

➤ to ensure confidentiality

➤ to ensure integrity

➤ We need to protect content

➤ never as plain text

➤ detect modifications

nginx
TLS

cert www

T
L
S

?

HOW TO ATTACK SCONE-BASED APPLICATIONS?
➤ via OS interface:

➤ SCONE provides standard shields (reuse across
applications)

➤ via side channels:

➤ SCONE is resistant against side channel attacks

➤ via software bugs in application:

➤ make it difficult to exploit

[Scone, OSDI 2016]

[under submission]

SOFTWARE BUGS
➤ Bounds checker (SGXBounds):

➤ protect against low-level vulnerabilities

➤ e.g., protects against Heartbleed

➤ Focus on microservices:

➤ isolation of microservices

➤ Protect against triggering software bugs:

➤ by limiting access to APIs of interfaces

[Scone, EuroSys 2017]

[IEEE Sec & Priv., 2016]

SOFTWARE BUGS!
➤ SGX:

➤ prevent accesses via
privileged / other software

➤ Smart adversary:

➤ will exploit bugs inside
application code

TEE

application

secret

external API

same address space

CLOUD-NATIVE APPLICATIONS: MICROSERVICES

µservice µservice

µservice µservice

µservice µservice

µservice µservice

µservice µservice

TEE

application

secretsecret

external API external API

same address space separate address spaces

WHICH MICROSERVICES SHOULD RUN INSIDE ENCLAVES?

µservice µservice

µservice µservice

µservice µservice

µservice µservice

µservice µservice

secret

external API

separate address spaces

protect microservices containing „secrets“

WHICH MICROSERVICES SHOULD RUN INSIDE ENCLAVES?

µservice µservice

µservice µservice

µservice µservice

µservice µservice

µservice µservice

secret

external API

separate address spaces

run inside of enclaves

internal API

WE NEED TO PROTECT API CREDENTIALS!

µservice µservice

µservice µservice

µservice µservice

µservice µservice

µservice µservice

secret

external API

separate address spaces

dump memory, get credentials

credentials1
2

APPROACH: PREVENT ACCESS TO INTERNAL APIS

µservice µservice

µservice µservice

µservice µservice

µservice µservice

µservice µservice

secret

external API

separate address spaces

prevent adversaries from

triggering bugs inside of enclaves!

internal API

1 defect every 1700 lines

RESTRICT USAGE OF API

µservice µservice

µservice µservice

µservice µservice

µservice µservice

µservice µservice

secret

external API

separate address spaces

Protecting just credentials insufficient

if adversary can still control API calls

credentials

TRANSITIVE CLOSURE

µservice µservice

µservice µservice

µservice µservice

µservice µservice

µservice µservice

secret

external API

separate address spaces

Need to protect the credentials credentials

credentials

credentials

RUN ALL MICROSERVICES INSIDE ENCLAVES!

µservice µservice

µservice µservice

µservice µservice

µservice µservice

µservice µservice

secret

attacker must attack via

external API (or OS interface):

=> need to harden these APIs!

external API

separate address spaces

APPLICATION CODE
- end-2-end security without app reeingineering -

SCONE: SUPPORTS NATIVE COMPILATION

Application

Application libraries

libc (OS Interface) Application

SCONE libc

Application libraries

native  
compilation

Application

SCONE libc

Application libraries

separate files

dynamic  
linking

libc (OS Interface)

MRENCLAVE includes  
dynamic libraries

SCONE: CROSS-COMPILATION

Application

SCONE libc

Application libraries

Application

Application libraries

libc (OS Interface)

static  
linking

Application

SCONE libc

Application libraries

1 binary

Application

SCONE libc

Application libraries

Application

SCONE libc

Application libraries

separate files

libc (OS Interface)

native  
compilation

dynamic  
linking

cross-  
compilation

(gcc)

MRENCLAVE includes  
all libraries

SGXBOUNDS: BOUNDS CHECKS INSIDE OF ENCLAVES

Application

SCONE libc

Application libraries

static  
linking

Application

Application libraries

1 binary

Application

SCONE libc

Application libraries

Application

SCONE libc

Application libraries

native  
compilation

cross-  
compilation Application

SCONE libc

Application libraries

1 binaryApplication

Application libraries

libc (OS Interface)

SCONE libc

Application libraries

Application

[EuroSys2017]

(LLVM)

CONTAINER VS VMS

VIRTUAL MACHINES VS CONTAINER

Hypervisor

Operating system

Application

System libraries

Application libraries

virtual machine (VM)

hardware virtualization

Operating system

Application

System libraries

Application libraries

container

host host

operating system virtualization

containers are more light-weight but often considered less secure 37

LIGHT WEIGHT?
➤ Sizes of container images:

➤ can be substantially smaller

➤ Need to add application

➤ image becomes larger

➤ Questions:

➤ hardware protection?

➤ vulnerabilities in OS?

➤ ease of use?

Container vs VM Image Sizes

Si
ze

 in
 M

B

0

225

450

675

900

Busybox Alpine Ubuntu CentOS

857

383

52

Container VMs 38

preferred by  
SCONE & Docker

SCONE: SECURE CONTAINERS

Hypervisor

Operating system

Application

System libraries

Application libraries

virtual machine (VM)

hardware virtualization

Operating system

Application

System libraries

Application libraries

SGX enclave

secure container

host host

operating system virtualization

secure containers are more light-weight and more secure than VMs
39

encrypted

not-  
encrypted

CONTAINER WORKFLOW
Ease of use!

CC0

CONTAINER WORKFLOW

service provider
extended  
Dockerfile

custom
microservice

image

build

secure container

image

CONTAINER WORKFLOW

➤ SCONE cross compilers:

➤ C, C++

➤ Rust

➤ GO

➤ Fortran

➤ Python (interpreter)

➤ Java (JVM, alpha)

➤ Docker

➤ to build, ship and deploy images

service provider
extended  
Dockerfile

custom
microservice

image

build

SCONE cross
compiler

image

uses

secure container

image

more languages soon..

CONTAINER WORKFLOW

microservice,

libraries

config files build

curated
microservice

image
image curator

build

service provider
extended  
Dockerfile

custom
microservice

image

ease of use!

DOCKER HUB

hub.docker.com/explore

…

SCONE CURATED IMAGES (WORK IN PROGRESS)

nginx SCONE image

hub.docker.com/explore

…

redis SCONE image

mysql SCONE image

mongo SCONE image

SCONE images are shielded and tuned for SGX

CONTAINER WORKFLOW

microservice,

libraries

config files build

curated
microservice

image
image curator

service provider
extended  
Dockerfile

custom
microservice

image

containercontainersecure
container

application
service provider stack file

deploy

==

customize

build

development

operations

COMPOSE EXAMPLE

HOW TO DISTRIBUTE SECRETS?

➤ State of the art:

➤ put passwords in compose
file

➤ Problem:

➤ Docker engine is not
trusted

Bad practice to put secrets in compose file!

mysql-master:

 environment:

 MYSQL_ROOT_PASSWORD: rootpass

 MYSQL_DATABASE: messenger

 MYSQL_USER: messenger

 MYSQL_PASSWORD: messenger

 tty: true

 tty-key: mysecret

 image: mysql

 MRENCLAVE: 0x3394940494

 FSPFKEY: topsecret

 stdin_open: true

HOW TO DISTRIBUTE SECRETS?

➤ Problem: team member leaves

➤ We would need to rekey

➤ We support:

➤ variables - value retrieved
from a keystore

Use variables instead

mysql-master:

 environment:

 MYSQL_ROOT_PASSWORD: $rootpass

 MYSQL_DATABASE: messenger

 MYSQL_USER: messenger

 MYSQL_PASSWORD: $messenger

 tty: true

 tty-key: $messenger

 image: mysql

 MRENCLAVE: 0x3394940494

 FSPFKEY: $fspfkey

 stdin_open: true

mysql-master:

 environment:

 MYSQL_ROOT_PASSWORD: $rootpass

 MYSQL_DATABASE: messenger

 MYSQL_USER: messenger

 MYSQL_PASSWORD: $messenger

 tty: true

 tty-key: $messenger

 image: mysql

 MRENCLAVE: 0x3394940494

 FSPFKEY: $fspfkey

 stdin_open: true

EXAMPLE: MYSQL
mysql-master:

environment:

 MYSQL_ROOT_PASSWORD: rootpass

 MYSQL_DATABASE: messenger

 MYSQL_USER: messenger

 MYSQL_PASSWORD: messenger

tty-key: mysecret

MRENCLAVE: 0x3394940494

FSPFKEY: topsecret

mysql-master:

 environment:

 APPID: 012345

 tty: true

 image: mysql

 stdin_open: true

private stack file

standard stack file
split

Docker

CAS

extended compose file

APPROACH: RETRIEVE SECRETS FROM VAULT

container
containersecure

container
service

stack file

deploy

==

split

secure config

stack file

secrets

no secrets

pull

CAS

pull
Vault

HashiCorp’s

enclaved

enclaved

SCONE SUMMARY
➤ Simplifies moving application to SGX enclaves

➤ Provides:

➤ Secure application configuration

➤ Transparent attestation

➤ Secure main memory

➤ Integration with secure key store

➤ Transparent file protection

➤ Transparent TCP encryption

➤ Ease of use (via Docker integration)

QUESTIONS?
https://sconedocs.github.io/ http://scontain.com

