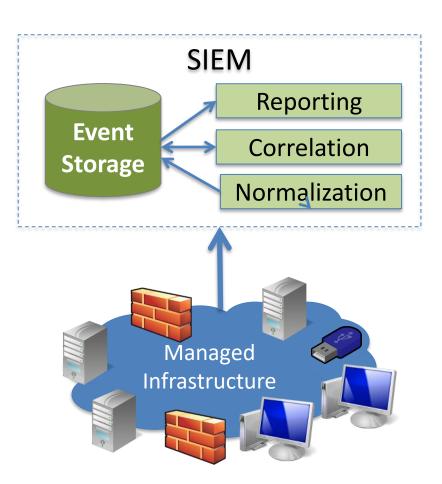


73rd IFIPWG 10.4 Meeting

Building a SIEM in the Cloud

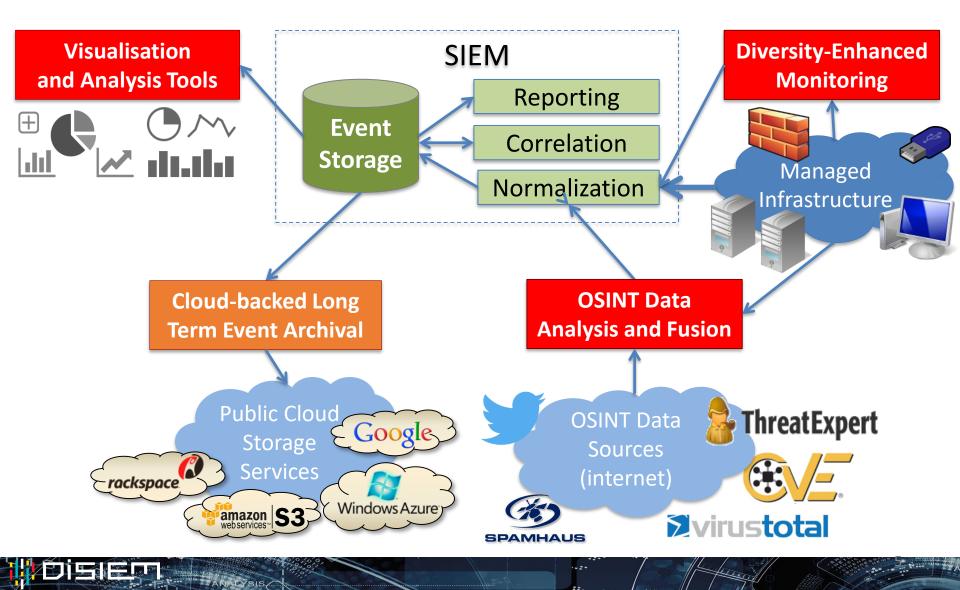

Adriano Serckumencka, <u>Ibéria Medeiros</u>, Alysson Bessani LaSIGE, Faculty of Sciences, University of Lisboa

Security Information and Event Management (SIEM) Systems

- Security Operation Centres: monitor and manage security of organizations infrastructures
- SIEM Systems: distributed tools used to collect, analyse and report
- Why companies spend millions to deploy SIEMs?
 - Compliance
 - Threat complexity

Security Information and Event Management (SIEM) Systems

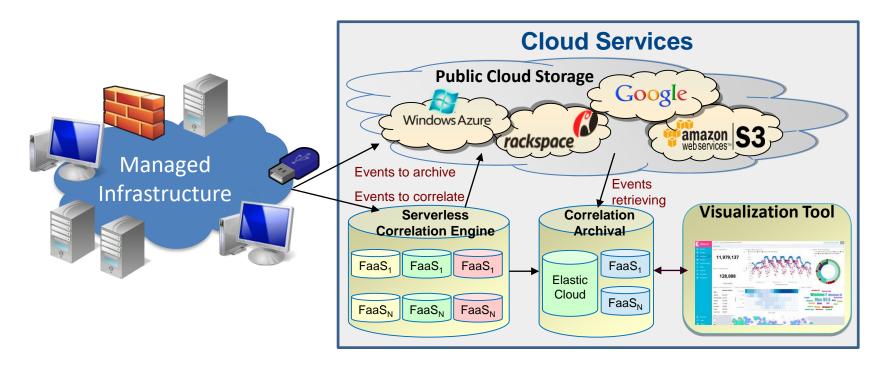
- Security Operation Centres: monitor and manage security of organizations infrastructures
- SIEM Systems: distributed tools used to collect, analyse and report
- Why companies spend millions to deploy SIEMs?
 - Compliance
 - Threat complexity


Limitations of SIEM Systems

- Threat intelligence (i.e., capability of recognize and rank threats) capacity of SIEMs is still in its infancy
- Current SIEMs can show any "low level" data related with the received events, but they have little "intelligence" to process this data and extract high-level information
- Most data visualisation techniques in current SIEMs are rudimentary
- Event correlation capabilities of SIEMs are as good as the quality of the events fed to it
- SIEMs are incapable of retaining the collected events for a long duration

Diversity Enhancements for SIEMs

SIEMs are incapable of retaining the collected events for a long duration due to storage and event processing constraints

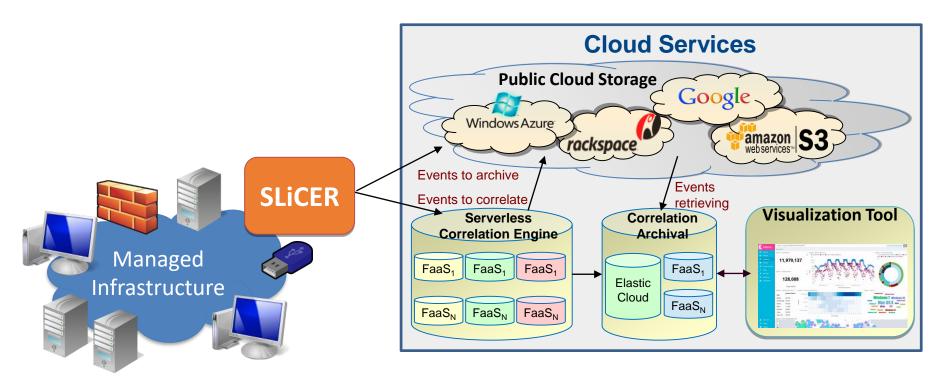

This limits their forensic investigation capabilities in the long run
Some zero-day vulnerabilities take up to 320 days to be discovered
SIEMs usually keep collected events stored by less than that

A cloud-backed system for storing selected subsets of events for long periods by using cloud storage services

SLICER - Safe Long-term Cloud Event aRchival

Why not build a SIEM in the cloud ?

Serverless: focus on application, not on infrastructure -> Function as a Service (FaaS)


removes the need for the traditional 'always on' server system sitting behind an application

- 2 -

Why not build a SIEM in the cloud ?

Serverless: focus on application, not on infrastructure -> Function as a Service (FaaS)

removes the need for the traditional 'always on' server system sitting behind an application

....

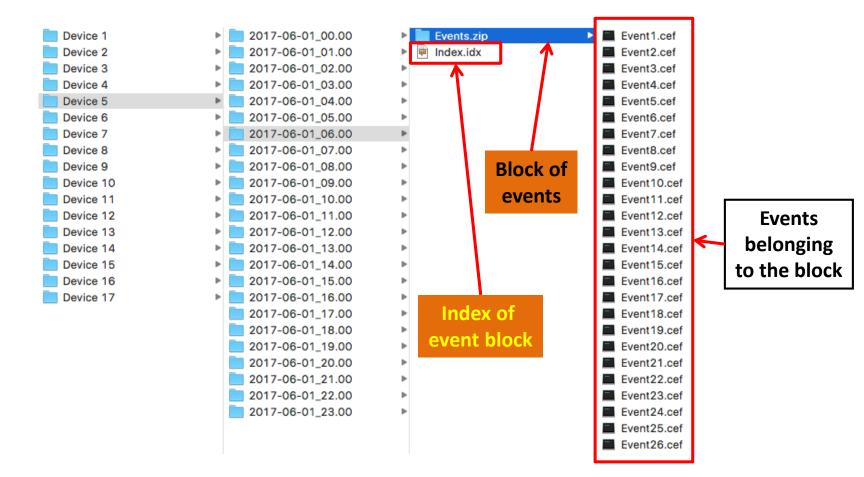
SLiCER Key Features

• Organization and storage of the events in a cloud-of-clouds

 \checkmark ensures security, cloud fault tolerance, and cost efficiency

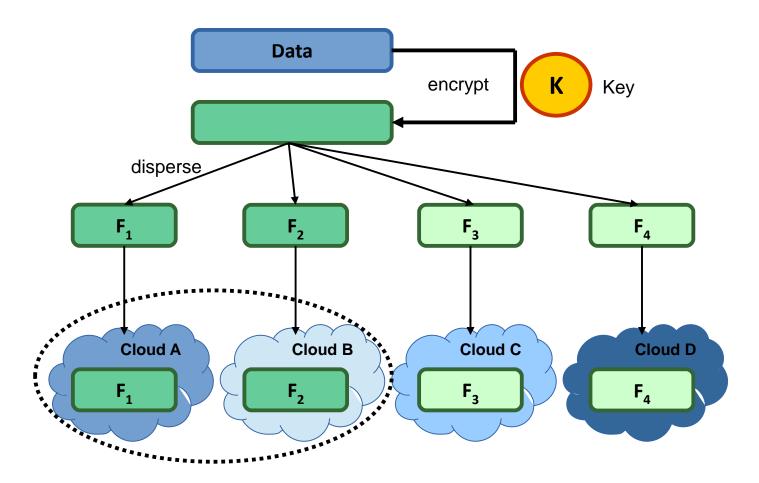
- A data model in which events are aggregated in blocks before being transferred to the clouds
 - \checkmark low costs in storing and retrieving data from the cloud
- A process for indexing events in the blocks considering event properties normally used for performing searches (e.g., the IP address of the event source)
 - ✓ acceptable query performance in the cloud-backed archive

SLiCER challenges


- 1. Organize the collected events to facilitate the queries to be performed on the archive.
- 2. Ensure the security of the events stored in the cloud
- 3. Retrieve events from the clouds in a cost-efficient way

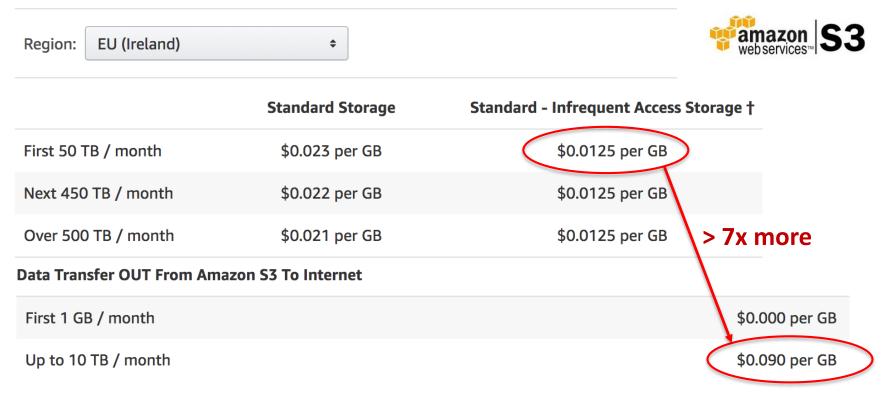
NALYSIS/

C1. Organize the events to facilitate queries on the archive


- 1. Create event blocks by device and interval of time
- 2. Create an index for each block of events

- 2 -

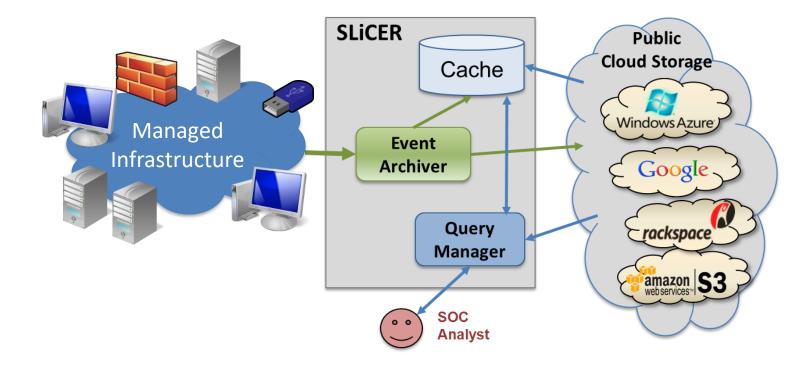
C2. Ensure the security of the events stored in the cloud


Use cloud-of-clouds storage approach for security & dependability

-2-

C3. Retrieve events from the cloud in a cost-efficient way

Storage Pricing (varies by region)



When querying the cloud archive, we have to avoid downloading data -> indexing

- 2 -

SLiCER Architecture

ALYSIS/

-2-

Query Model

- A query received by SLiCER must to be represented following the query model that follows the structure of blocks defined on the data model
- A query is composed of 3 components: *devices*, *time period* and *terms*

query = (devices; startTime, endTime; terms)

devices that	range of time to	set of words we are
generated the events	search the events	looking for in an event

Events Search

For each specified **devices**:

- 1. Retrieve the index file for each block containing events generated between **startTime** and **endTime**
- 2. Search for the **terms** in the index files
- 3. For each index file in which the some **term** was found, retrieve the corresponding block of events
- 4. Search for events satisfying startTime, endTime and terms in each block

Query Example

Get all actions made by Attacker address 192.168.1.22, at Feb.13.2017, between 00:00:00 and 00:06:00, registered by FTP and Check Point

({FTP, Check Point}; <Feb.13.2017, 00:00:00, 00:06:00>; {Attacker Address=192.168.1.22})

End Time	Name	Attacker Address	Attacker Host Name	Attacker Port Target Address	Target Port Target Host Name
Feb 13 2017 00:00	:42 Successful Network Logon	192.168.1.22	CHAT	0 192.168.1.23	FTP
Feb 13 2017 00:00	:42 User Logoff			192.168.1.23	
Feb 13 2017 00:00	:42 Successful Network Logon	192.168.1.22	CHAT	0 192.168.1.23	FTP server
Feb 13 2017 00:00	:42 User Logoff			192.168.1.23	
Feb 13 2017 00:01	:41 Successful Network Logon	192.168.1.21	TICKET	0 192.168.1.23	device
Feb 13 2017 00:01	:41 User Logoff			192.168.1.23	
Feb 13 2017 00:01	:41 Successful Network Logon	192.168.1.21	TICKET	0 192.168.1.23	FTP
Feb 13 2017 00:01	:41 User Logoff			192.168.1.23	FTP
Feb 13 2017 00:02	:21 Connector Raw Event Statistics				
Feb 13 2017 00:07	:21 Connector Raw Event Statistics				

End Time	Name	Attacker Address	Attacker Host Name	Attacker Port	Target Address	Target Port Target Host Name
Feb 13 2017 00:03:03	accept	172.16.24.100		61862	10.100.2.101	8443
Feb 13 2017 00:05:08	accept	172.16.27.150		58403	255.255.255.255	
Feb 13 2017 00:05:08	accept	10.100.1.100	DC	59306	10.10.0.21	Check Point
Feb 13 2017 00:05:08	accept	10.100.1.100	DC	58925	10.10.0.21	device
Feb 13 2017 00:05:08	accept	192.168.1.25	MR	52868	10.100.2.101	uevice
Feb 13 2017 00:05:08	accept	10.100.1.100	DC	59733	204.110.15.178	53
Feb 13 2017 00:05:08	accept	192.168.1.22	CHAT	4639	10.100.2.101	8443
Feb 13 2017 00:05:08	accept	10.100.1.106	COLEC	137	192.102.248.135	137
Feb 13 2017 00:05:08	accept	10.100.1.100	DC	59554	10.10.0.21	53
Feb 13 2017 00:05:09	accept	192.168.1.25	MR	61033	10.100.1.100	53 DC
Feb 13 2017 00:05:09	accept	172.16.22.103		39141	10.100.2.41	8443
Feb 13 2017 00:05:09	accept	192.168.1.23	FTP	1395	10.100.2.101	8443

Indexing

No Index

• no indexes are used, terms are assumed to be present in the blocks

Bloom Filters

- probabilistic data structures that represent a set of elements of the same type (e.g., source IP address, source port)
- fields to be indexed need to be configured by the SOC
- very small, fast to download and query, but generates false positives

Text-based Indexing (Apache Lucene)

- provides indexing and searching over documents with any type of content (formatted or not)
- larger (~20% of the original data), reasonably fast to query
- can be configured to index only certain event fields

73rd IFIPWG 10.4 Meeting

Building a SIEM in the Cloud

Adriano Serckumencka, <u>Ibéria Medeiros</u>, Alysson Bessani LaSIGE, Faculty of Sciences, University of Lisboa

Thank you!

