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FAILURE PREDICTION

© Uses prediction models trained with data of failure events

— Data can be numerical (e.g., free memory) or categorical (e.g., events)
— Models can be built using machine learning, statistics, etc.

vary=poged bytes/s

var,,=”',',:,zexes/s (ezrenceiifjlonret) ) .:,. o =
= Salfner & Malek’s model: Ao I LAf,

— Predictors trained using data from At

— Prediction performed at time t for failures
occurring in the interval At + At
* At is the minimal time below which (even) a predicted failure cannot be avoided
— Output: 0/1, failure probability
At, J At 4at,

4 Md
[ 4] LDl

At | ] |
Past-data window Lead time E Prediction window i




NOT A NEW CONCERN

Fault Injection for Failure
Prediction Methods Validation

Marco Vieiral, Henrique Madeira!, Ivano Irreral, Miroslaw Malek?

L University of Coimbra — Portugal
2 Humboldt-Universitét zu Berlin — Germany

mvieira@dei.uc.pt, henrigue@dei.uc.pt, ivano@dei.uc.pt, malek@informatik.hu-berlin.de




KEY CHALLENGES

Problems with failure prediction...

Obtaining training data is hard

m Fortunately, failures are rare events!

Identifying the relevant data for training is
difficult

Selecting the most adequate algorithm(s) is
complex

Furthermore: systems change over time!!!



KEY CONTRIBUTIONS (1)

Generating failure-related data using realistic
software fault injection + virtualization
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KEY CONTRIBUTIONS (2)

Assessment and comparison of failure prediction
systems
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PROBLEMS...

Systems change

Virtual machines are not the ideal solution
Hard to implement in complex systems
Boundaries of the system are unclear

Practical Applicability




WHAT ABOUT CONTAINERS?

* Containerized applications based on microservices
are highly flexible and scalable

This may be what
“ Widely spread, e.g. in cloud envirc o oo s

= |solation O.F.P work!

= Stability in the context surrounding the application

= Boundaries

Easy to replicate and manage ‘
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How CAN WE DO IT?

© Use data that are only about the container

— OS data cannot be considered
— Docker API, cAdvisor

Docker API

Irrera & Vieira

cAdvisor
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= Consider each container
individually
— Well defined boundaries!

— Each may contribute to
higher level models




How CAN WE DO IT?

* Use data that are only about the container
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= Automate replication and
fault injection to handle the “Online” part

— Easier to do in containers




CHALLENGES

Are the container-dependent variables enough to
make state of the art approaches work?

— We do no plan to develop new ones

Are the monitored variables really consistent
across containers running the same workloads?

Fault injection and representativeness thereof
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SUMMARY

We believe that practical applicability is the current
key issue

Containers make a set of assumptions valid that
may help us to solve the problem

We are just starting...

Not a Silver Bullet

— Obviously, this cannot be applied to every application

— Application that fit the containerized model are suited
* e.g. Microservices
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