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Table 3: Overall system MTBF for di�erent systems. Scale-
Normalized MTBF is calculated assuming same system contains
18688 nodes.

System MTBF (hours) Scale-Norm. MTBF (hours)
Jaguar XT4 36.91 15.47
Jaguar XT5 22.67 22.67
Jaguar XK6 8.93 8.93

Eos 189.04 7.45
Titan 14.51 14.51

middle part of the bath tub curve) [8, 10]. Therefore, we investi-
gate if the reliability of the system changes during the stable period?

RQ1: Are newer generations of HPC systems becoming less reli-
able?
RQ2: During the stable operational period, does the reliability of
the system changes signi�cantly? If so, by how much?

We use the mean time between failure (MTBF) as the �rst metric
to study a system’s reliability. System MTBF has been a commonly
used measure of a system’s reliability to represent how often the
system is expected to experience a failure on average. It is a simple,
and hence most prevalent, measure of temporal behavior of failure
events on a system. Therefore, we start our analysis by comparing
the MTBF of di�erent systems in our study.

Table 3 shows the MTBF of each system and a scale-normalized
MTBF metric. As shown in Table 1, all systems in our study are
not of the same scale (in terms of number of nodes), therefore, sim-
ply comparing the system MTBF is not a fair comparison for sys-
tem with higher number of nodes. Therefore, the scale-normalized
MTBF metric is presented to compare systemMTBF as if all systems
were deployed with the same number of compute nodes, as de�ne
below.

Scale-Normalized MTBF = MTBF⇥Num of Nodes in the System
Max Number of Nodes across all Systems

From Table 1, we note that Jaguar XT5 has the highest scaled
MTBF, followed by the Jaguar XT4 and Titan XK7 systems. Jaguar
XT4 and Jaguar XT5 are two consecutive generations of Cray sys-
tems that shared several design features. Similarly, Jaguar XK6 and
Titan XK7 are also two consecutive generations of Cray systems.
We found that it is possible that newer generation of systems may
have higher scale-normalized MTBF than previous generation of
systems. While one metric may not always capture the full relia-
bility characteristics of a system as we discuss later, we observe
the reliability doesn’t necessarily decrease monotonically over dif-
ferent generations of the HPC systems, as projected by previous
studies [11, 26].

Next, we show that comparison across systems based on scale-
normalized MTBF averaged over the whole time may lead to in-
complete and inaccurate characterization. Fig. 1 shows how the
scale-normalized MTBF of the system changes over time. The plot
shows the scale-normalized MTBF metric averaged over each quar-
ter. We point out that we experimented with di�erent granularities
(e.g., week, month, quarter) and were able to ensure statistical sig-
ni�cance for comparison with quarter granularity.
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Figure 1: Scale-normalized MTBF of each system over time
(averaged quarterly).

Fig. 1 quantitatively shows that the scale-normalized MTBF
changes drastically even during the stable operational periods of
the systems. For example, Jaguar XT5 systems shows approximately
4x change in scale-normalized MTBF and Titan system shows ap-
proximately 2.5x change in scale-normalized MTBF over time. We
also observe that during some time periods newer generation of
systems have higher scale-normalized MTBF, while during some
time periods previous generation of systems are more reliable –
indicating that there is not necessarily a monotonic trend at the
system level as projected by technology trends and other stud-
ies [8, 10]. We also con�rmed that these changes in MTBF are not
due to software upgrades, as also discussed later di�erent failure
types also exhibit this behavior. This also indicates that improved
operational practices and acceptance tests (e.g., better benchmark
suites for inducing GPU speci�c failures, new memory errors, etc.)
have been able to balance the e�ects of decreasing reliability at
the device level, and we should continue to focus on investing into
improved system maintenance and operational cost in the future.

Summary Our �eld study shows that the reliability of HPC
systems doesn’t necessarily decrease monotonically over
di�erent generations of the HPC systems. Even during the
stable operational period the system MTBF may change by
up to 4x , contrary to conventional wisdom that MTBF of
HPC system during stable operational period doesn’t vary
signi�cantly.

Given the signi�cant variance in system reliability, HPC system
acquisition teams should also consider adding upper bound
on the variance in MTBF as a key metric in the request for
proposals and contracts. This will attempt to ensure that system
manufacturers and integrators have additional responsibility
and support available should the reliability drops below a
certain threshold, instead of only system administrators trying
to improve the user experience during such period.

As optimal checkpointing intervals employed by applications
depend on the MTBF [2], this information should be exposed to
the HPC users easily and systematically to reduce the impact
of failures (i.e., wasted work). Unfortunately, exposing failure
frequency to users is not a widely-adopted practice yet because
of the conventional wisdom that systemMTBF is fairly constant
over time for a stable system.
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Fig. 3: Distribution of each failure-type across rows (a) and columns (b) of cabinets, normalized by the frequency of each
failure-type instead of the total number of failures to understand the characteristic of each failure-type better.
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Fig. 2: Histogram of failures across 200 cabinets (a), and across
600 cages (b), and heatmap showing the spatial distribution of
all failures across 200 cabinets physically organized as 25 rows
and 8 columns (c).

Next, we plot the spatial distribution of failure in the row-
column space of the cabinets. Fig. 2(c) shows the distribution
of failures across the cabinets based on the physical location
of the cabinet. From the figure, we can again observe that
all cabinets are not equally likely to be hit by a failure.
However, it is very challenging to accurately reason about
this non-uniform distribution since multiple factors such as
environmental, physical factors may be affecting this spatial
distribution simultaneously. We start our further discussion
by investigating how different failure-types are spatially dis-
tributed in the space.

Observation 1. The spatial distribution of failures is not
uniform. Due to an ensemble of physical characteristics of
the system, some locations may be more prone to failures than
others.

B. Spatial Distribution of Failure-types

One may question the observation from Fig. 2(c) arguing
that a few dominant failures may happen more frequently
in certain cabinets and skew the distribution of failures in

space. Therefore, in Fig. 3, we show the distribution of failures
across rows and columns for different failure-types. It has
been normalized by the number of failures of “that” type
instead of the total number of failures. This normalization
brings out the property of each failure-type better instead of
being affected by the dominant failures. We observe that nearly
all failure-types are unequally distributed in space as well.
We have attempted to correlate this unequal distribution with
power and cooling infrastructure and other facility parameters,
but there is not enough strong evidence to suggest why a
particular type of failure was distributed in a skewed manner.
However, this finding has important implications for future
fault-tolerance research. Our finding implies that large-scale
jobs may have significantly different probability of getting
interrupted by a system failure event depending on their
node allocation. System-administrators can use this kind of
information to allocate mission-critical jobs to relatively more
reliable cabinets.

Next, we investigate what happens within a cabinet? Fig. 4
shows the distribution of failures among different cage levels
inside a cabinet, blades in a cage, and nodes within a blade.
While there are no clear visible trends at the blade- and node-
level, we observe that the likelihood of failures happening in
the upper cages (cage 2) is higher. This is true for almost
all failure-types, however not for all (e.g., kernel panic).
Therefore, system administrators can also use this behavior to
prioritize mission-critical production jobs towards lower levels
of cages (cage 0 and cage 1).

Observation 2. Most of the failure-types are not equally
distributed in space. This information can be used to better
schedule a mission-critical job or to estimate the probability
of job interruption depending on job’s node allocation layout.

C. Understanding Re-occurrence Behavior of Different
Failure-types

In this section, we analyze if one failure-type is likely to
occur soon after a another failure-type. First, we understand
how this happens within the grace-period. Fig. 5(a) shows
the number of occurrences of a failure-type following another
failure-type within a 5 second grace-period. We obtained
similar results for a 300 second grace-period that we have
applied (not shown here due to space constraints). We observe
that several failure-types are reported multiple times within
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Fig. 3: Distribution of each failure-type across rows (a) and columns (b) of cabinets, normalized by the frequency of each
failure-type instead of the total number of failures to understand the characteristic of each failure-type better.
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Fig. 2: Histogram of failures across 200 cabinets (a), and across
600 cages (b), and heatmap showing the spatial distribution of
all failures across 200 cabinets physically organized as 25 rows
and 8 columns (c).

Next, we plot the spatial distribution of failure in the row-
column space of the cabinets. Fig. 2(c) shows the distribution
of failures across the cabinets based on the physical location
of the cabinet. From the figure, we can again observe that
all cabinets are not equally likely to be hit by a failure.
However, it is very challenging to accurately reason about
this non-uniform distribution since multiple factors such as
environmental, physical factors may be affecting this spatial
distribution simultaneously. We start our further discussion
by investigating how different failure-types are spatially dis-
tributed in the space.

Observation 1. The spatial distribution of failures is not
uniform. Due to an ensemble of physical characteristics of
the system, some locations may be more prone to failures than
others.

B. Spatial Distribution of Failure-types

One may question the observation from Fig. 2(c) arguing
that a few dominant failures may happen more frequently
in certain cabinets and skew the distribution of failures in

space. Therefore, in Fig. 3, we show the distribution of failures
across rows and columns for different failure-types. It has
been normalized by the number of failures of “that” type
instead of the total number of failures. This normalization
brings out the property of each failure-type better instead of
being affected by the dominant failures. We observe that nearly
all failure-types are unequally distributed in space as well.
We have attempted to correlate this unequal distribution with
power and cooling infrastructure and other facility parameters,
but there is not enough strong evidence to suggest why a
particular type of failure was distributed in a skewed manner.
However, this finding has important implications for future
fault-tolerance research. Our finding implies that large-scale
jobs may have significantly different probability of getting
interrupted by a system failure event depending on their
node allocation. System-administrators can use this kind of
information to allocate mission-critical jobs to relatively more
reliable cabinets.

Next, we investigate what happens within a cabinet? Fig. 4
shows the distribution of failures among different cage levels
inside a cabinet, blades in a cage, and nodes within a blade.
While there are no clear visible trends at the blade- and node-
level, we observe that the likelihood of failures happening in
the upper cages (cage 2) is higher. This is true for almost
all failure-types, however not for all (e.g., kernel panic).
Therefore, system administrators can also use this behavior to
prioritize mission-critical production jobs towards lower levels
of cages (cage 0 and cage 1).

Observation 2. Most of the failure-types are not equally
distributed in space. This information can be used to better
schedule a mission-critical job or to estimate the probability
of job interruption depending on job’s node allocation layout.

C. Understanding Re-occurrence Behavior of Different
Failure-types

In this section, we analyze if one failure-type is likely to
occur soon after a another failure-type. First, we understand
how this happens within the grace-period. Fig. 5(a) shows
the number of occurrences of a failure-type following another
failure-type within a 5 second grace-period. We obtained
similar results for a 300 second grace-period that we have
applied (not shown here due to space constraints). We observe
that several failure-types are reported multiple times within
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System failures are not uniformly randomly 
distributed in space. 

This holds true for individual failure types, 
different time windows, spatial granularity. 
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Figure 6. Temporal characteristics of failures from multiple HPC systems. The dashed vertical line indicates the “observed” mean time between failures
(MTBF). Multiple failures that occur beyond the x-axis limits are not shown here for clarity, but they contribute toward MTBF calculation.
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Figure 7. Result of Kolmogorov-Smirnov test (K-S test) for failure
logs of multiple systems. Null hypothesis that the samples for a given
system comes from a given probability distribution function is rejected
at level 0.05 if k-s test’s D-statistics is higher than the critical D-
value. Comparison between D-statistics and critical D-value shows that
Weibull distribution is a better fit in all cases except the last one.

We take advantage of this observation to reduce the checkpoint-
ing overhead on large-scale HPC systems by changing the check-
pointing intervals such that it captures the temporal locality in
failures. Towards that, we use two statistical techniques to fit our
failure inter-arrival times data against four distributions, normal,
Weibull, log normal, and the exponential distribution. First, Fig. 7
shows the results from the Kolmogorov-Smirnov test for different
distributions [15]. We notice that Weibull distribution fits our sam-
ple data better than the exponential distribution. We also present the
QQ-plot for visualizing the fitness of these distributions (Fig. 8),
which reaffirms the K-S test results.

We note that a Weibull distribution is specified using both a
scale parameter (λ) and shape parameter (k). If the value of shape
parameter is less than one, it indicates a high infant mortality rate
(i.e., the failure rate decreases over time). We point out that shape
parameter (k) is less than one for the Weibull distributions that fit
our failure sample data. This has also been observed by other re-
searchers for various other systems [21, 31, 35, 17], indicating a
larger applicability of the new techniques presented in this work
(Section 5), which are based on this observation. Next, we show
how does a better fitting Weibull distribution affect the OCI and the
total execution time (as opposed to the previously discussed analyt-
ical model and simulation-based results that assumed exponential
distribution of failure inter-arrival times).
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QQ−Plot from Failure Log Samples (LANL System 5)

Figure 8. QQ-Plot for graphical representation of fitting different
probability distribution functions (PDF). The quantiles drawn from
the sample (failure log) are on the x-axis and y-axis shows theoretical
quantiles. If the samples statistically come from a particular distribution
function then points of QQ-plot fall on or near the straight line with
slope=1. Only three representative failure logs are plotted due to space
constraints, the rest show similar behavior.

4.2 Effect of Temporal Locality in Failures on OCI

We found that the failure inter-arrival times are better fitted by a
Weibull distribution than an exponential distribution. Therefore, in
this section we present the results from our event-driven simulator
to study how the OCI and total execution time are affected if failure
events are drawn from a Weibull distribution instead of an expo-
nential distribution (as assumed in previously discussed analytical
model). Fig. 9 shows the total execution time of a “hero” run on
three different systems (10K, 20K and 100K nodes). We notice that
the Weibull distribution curve is always below the exponential dis-
tribution curve. This result suggests that if failure events are drawn
from a Weibull distribution, it will result in an overall execution
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Figure 6. Temporal characteristics of failures from multiple HPC systems. The dashed vertical line indicates the “observed” mean time between failures
(MTBF). Multiple failures that occur beyond the x-axis limits are not shown here for clarity, but they contribute toward MTBF calculation.
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Figure 7. Result of Kolmogorov-Smirnov test (K-S test) for failure
logs of multiple systems. Null hypothesis that the samples for a given
system comes from a given probability distribution function is rejected
at level 0.05 if k-s test’s D-statistics is higher than the critical D-
value. Comparison between D-statistics and critical D-value shows that
Weibull distribution is a better fit in all cases except the last one.

We take advantage of this observation to reduce the checkpoint-
ing overhead on large-scale HPC systems by changing the check-
pointing intervals such that it captures the temporal locality in
failures. Towards that, we use two statistical techniques to fit our
failure inter-arrival times data against four distributions, normal,
Weibull, log normal, and the exponential distribution. First, Fig. 7
shows the results from the Kolmogorov-Smirnov test for different
distributions [15]. We notice that Weibull distribution fits our sam-
ple data better than the exponential distribution. We also present the
QQ-plot for visualizing the fitness of these distributions (Fig. 8),
which reaffirms the K-S test results.

We note that a Weibull distribution is specified using both a
scale parameter (λ) and shape parameter (k). If the value of shape
parameter is less than one, it indicates a high infant mortality rate
(i.e., the failure rate decreases over time). We point out that shape
parameter (k) is less than one for the Weibull distributions that fit
our failure sample data. This has also been observed by other re-
searchers for various other systems [21, 31, 35, 17], indicating a
larger applicability of the new techniques presented in this work
(Section 5), which are based on this observation. Next, we show
how does a better fitting Weibull distribution affect the OCI and the
total execution time (as opposed to the previously discussed analyt-
ical model and simulation-based results that assumed exponential
distribution of failure inter-arrival times).
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QQ−Plot from Failure Log Samples (LANL System 5)

Figure 8. QQ-Plot for graphical representation of fitting different
probability distribution functions (PDF). The quantiles drawn from
the sample (failure log) are on the x-axis and y-axis shows theoretical
quantiles. If the samples statistically come from a particular distribution
function then points of QQ-plot fall on or near the straight line with
slope=1. Only three representative failure logs are plotted due to space
constraints, the rest show similar behavior.

4.2 Effect of Temporal Locality in Failures on OCI

We found that the failure inter-arrival times are better fitted by a
Weibull distribution than an exponential distribution. Therefore, in
this section we present the results from our event-driven simulator
to study how the OCI and total execution time are affected if failure
events are drawn from a Weibull distribution instead of an expo-
nential distribution (as assumed in previously discussed analytical
model). Fig. 9 shows the total execution time of a “hero” run on
three different systems (10K, 20K and 100K nodes). We notice that
the Weibull distribution curve is always below the exponential dis-
tribution curve. This result suggests that if failure events are drawn
from a Weibull distribution, it will result in an overall execution
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Figure 5: GPU failures exhibit temporal locality: These figures show the failure arrival time distribution. The dashed vertical line indicates the
“observed" mean time between failure (MTBF). Multiple failures that occur beyond the x-axis limits are not shown here for clarity, but they
contribute toward the MTBF calculation. Note that the combined MTBF is less than the MTBF for each individual types of failure.
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Figure 6: Frequency of daily occurrences for three dominant
GPU failure types. This figure shows that the temporal
locality is not an artifact of multiple errors occurring on a few
number of days.
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Figure 7: QQ-Plot for graphical representation of fitting
different probability distribution functions (PDF).
The quantiles drawn from the sample (failure log) are on the
x-axis and y-axis shows theoretical quantiles. If the sam-
ples statistically come from a particular distribution function
then points of QQ-plot fall on or near the straight line with
slope=1. Each type of GPU failures show similar behavior
(but not shown here).

resolved by soldering the cards before the system went into
production with GPUs. The mean time to application interrup-
tion (due to all failure events) in the production run is more
than 40 hours, significantly higher than the estimated MTBF
of the whole system (11.7 hours) using the vendor specified
MTBF for the GPU card [2].

We perform rigorous stress tests and high-standard accep-
tance tests on these GPU cards before they go in production.
The rigor helps the center’s operations team identify bad GPU
cards early enough. Even during a production run, if a GPU
card exhibits a particular kind of error more than a small thresh-
old, that particular GPU card goes under rigorous stress testing
and is disqualified if the errors re-appear. As we show later
as well, only a small fraction of “bad” GPU cards encounter
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Figure 8: Result of Kolmogorov-Smirnov test (K-S test) for
different types of GPU failure data. Null hypothesis
that the samples for a given system come from a given
probability distribution function is rejected at level 0.05 if k-s
test’s D-statistics is higher than the critical D-value. Com-
parison between D-statistics and critical D-value shows that
Weibull distribution fits the best.

most of the errors repeatedly, and hence, are enough to bring
down the MTBF of the whole system significantly. Therefore,
by doing this exercise continuously, we identify such cards
early and consequently, increase the mean time to application
interruption significantly.
Observation 1. Our field data suggests that the current gener-
ation of GPUs deployed on the Titan supercomputer are fairly
stable and experience failures at very low rate. We note that
performing rigorous tests during the production phase and
high-standard acceptance tests before the production phase
helps us identify the bad cards early enough, and consequently,
increases the mean time to application interruption signifi-
cantly.

While MTBF is a useful metric, it is not sufficient by itself
to understand the characteristics of GPU related failures. To
address this issue, we plot the inter-arrival failure distribution
for GPU related failures (Fig. 5). Interestingly, a significant
fraction of the failures occur much before the observed MTBF.
This is true not only for all GPU failures combined, but also for
dominant GPU failure types as well. These results indicate that
there exists a strong temporal locality between GPU failures.
This finding also implies that the average work lost due to a
failure would be less, because a significant fraction of failures
occur soon after a previous failure. However, this temporal
locality characteristic is not artificially generated because a
high number of failures occur on the same day or in the span of
a couple of days. Fig. 6 shows that GPU failures do not show
this kind of behavior, for example, there are only a couple of
days during the observed period when more than two failures

5

System failures exhibit strong temporal 
locality (not same as the traditional early 

bath-tub curve).
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Figure 5: GPU resource distribution for the SBE offender
nodes (excluding top two SBE offenders): GPU core
hours (a), and GPU memory utilization (b).

therefore, higher GPU resource utilization alone may not be
considered as the “cause”. Fig. 5 shows the normalized GPU
core hours and memory utilization for all SBE offender nodes.
The normalization is performed using the average for all SBE
offender nodes except the top two nodes (which are considered
outliers, as their SBEs occur in a single day only). We observe
that the nodes with higher SBE count do not necessarily use
higher GPU core hours or run workloads with higher memory
utilization.

While GPU resource utilization does not seem to be directly
correlated with the SBE occurrence frequency on the GPU
nodes, we suspect that the variance in GPU resource utilization
may be correlated to higher SBE occurrences. More precisely,
we want to test the hypothesis that days with higher variance
in GPU utilization experience higher single bit errors. Fig. 6
shows the top 50 days that encountered most SBEs (in increas-
ing order) and the corresponding variance in GPU resource
utilization on that day. We note that Fig. 6(a) and (b) indicate
that the couple of days with the highest SBE count may also
experience the highest variance in their GPU resource utiliza-
tion. However, a more closer look at top 4 to 50 days (Fig. 6(c)
and (d)) shows that variance in GPU resource utilization does
not imply higher daily SBEs.

Observation 3 We found that GPU resource utilization and
the variance in the GPU resource utilization do not seem to
be significantly correlated with the SBE occurrences. Higher
GPU resource utilization or its variance do not necessarily
result in a higher SBE count. We believe that an important
implication of this finding is that GPU resilience simulation
and modeling frameworks do not necessarily need to vary the
soft-error rate based on the compute load or variance in the
load. This can potentially simplify the design of such tools
without compromising the accuracy of the study.

We learned that the GPU resource utilization is not
highly correlated with the SBE frequency on SBE offender
nodes. Here, we investigate the relationship between specific
users/applications and SBE counts. In other words, is a certain
fraction of users/applications experiencing more single bit er-
rors than others? If so, what are the respective GPU resource
utilization levels?

(a) top 50 days (b) top 50 days

(c) top 4 to 50 days (d) top 4 to 50 days

Figure 6: Variance in the GPU resource utilization and daily
SBE count: GPU core hours for top 50 days (a),
for top 50 days excluding the top 3 days (b), GPU
memory utilization for top 50 days (c), and for top
50 days excluding the top 3 days (d). Days are sorted
in increasing order of SBE count.

(a) (b)

Figure 7: GPU core-hours for users (a), and applications (b)
experiencing SBEs.

Fig. 7(a) shows the SBE count of different users versus
their respective GPU core hours. Both SBE count and GPU
core hours have been normalized by their respective average
values. We also point out that only users that encountered at
least one single bit error are included in the plot. We found
that the correlation between GPU core hours and SBE count
is significant when studied at the user-level. The Pearson
coefficient is 0.59 with p-value < 0.05 while the Spearman
coefficient is 0.89 with p-value < 0.05. This indicates a strong
non-linear correlation. We did similar analysis between the
SBE count for users versus their respective GPU memory
utilization. We found similar trends in the results (not shown
here due to lack of space).

Fig. 7(b) shows that SBE count for applications versus its
respective GPU core hours. Only the applications affected by
SBEs are included in the plot. Similar to our previous analysis
for users, we found strong non-linear correlation in this case as
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GPU core utilization or variance in utilization does not 
necessarily correlate with soft-errors, application and users do!

[HPCA 2016] A Large-Scale Study of Soft-Errors on GPUs in the Field 
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Figure 20. Benefits of iLazy with an upper bound checkpointing interval compared to the base OCI case across different scale of systems (number of
nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
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Figure 21. Modeling the upper bound on the checkpointing interval
for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, αmax−oci) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (αoci).

The amount of “additional” lost work compared to the OCI case
can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((αmax−oci−αoci)), if
a failure did occur in this time window.

performance loss = (αmax−oci − αoci)(e
−(

t2
λ

)k
− e−(

t4
λ

)k )

= (αmax−oci − αoci)(e
−(

2(αoci+β)
λ

)k
− e−(

αmax−oci+αoci+2β

λ
)k )

(12)

Note that the probability that an event happens between time tx

and ty is given by Pr(tx, ty) = e−( tx
λ

)k − e−(
ty
λ

)k (for Weibull
distribution).

The benefit can be estimated as one checkpointing cost saving
(β) multiplied by the probability that the failure happens beyond
time t3.

performance gain = βe−(
t3
λ

)k (13)

Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:

βe−(
αmax−oci+αoci+β

λ
)k = (αmax−oci − αoci)e

−(
2(αoci+β)

λ
)k

−(αmax−oci − αoci)e
−(
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If the αlazy (Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at αmax−oci.

Note that our estimation of the maximum value of checkpoint
interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.

(a) (b) (c)

Figure 20. Benefits of iLazy with an upper bound checkpointing interval compared to the base OCI case across different scale of systems (number of
nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
difference in y-axis scales.
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Figure 21. Modeling the upper bound on the checkpointing interval
for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, αmax−oci) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (αoci).

The amount of “additional” lost work compared to the OCI case
can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((αmax−oci−αoci)), if
a failure did occur in this time window.
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Note that the probability that an event happens between time tx

and ty is given by Pr(tx, ty) = e−( tx
λ

)k − e−(
ty
λ

)k (for Weibull
distribution).

The benefit can be estimated as one checkpointing cost saving
(β) multiplied by the probability that the failure happens beyond
time t3.

performance gain = βe−(
t3
λ

)k (13)

Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:
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If the αlazy (Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at αmax−oci.

Note that our estimation of the maximum value of checkpoint
interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.
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Figure 20. Benefits of iLazy with an upper bound checkpointing interval compared to the base OCI case across different scale of systems (number of
nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
difference in y-axis scales.
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Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, αmax−oci) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (αoci).

The amount of “additional” lost work compared to the OCI case
can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((αmax−oci−αoci)), if
a failure did occur in this time window.

performance loss = (αmax−oci − αoci)(e
−(
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− e−(
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)k )
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Note that the probability that an event happens between time tx

and ty is given by Pr(tx, ty) = e−( tx
λ

)k − e−(
ty
λ

)k (for Weibull
distribution).

The benefit can be estimated as one checkpointing cost saving
(β) multiplied by the probability that the failure happens beyond
time t3.

performance gain = βe−(
t3
λ

)k (13)

Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:
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If the αlazy (Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at αmax−oci.

Note that our estimation of the maximum value of checkpoint
interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.
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Figure 20. Benefits of iLazy with an upper bound checkpointing interval compared to the base OCI case across different scale of systems (number of
nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
difference in y-axis scales.
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Figure 21. Modeling the upper bound on the checkpointing interval
for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, αmax−oci) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (αoci).

The amount of “additional” lost work compared to the OCI case
can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((αmax−oci−αoci)), if
a failure did occur in this time window.

performance loss = (αmax−oci − αoci)(e
−(

t2
λ

)k
− e−(

t4
λ

)k )

= (αmax−oci − αoci)(e
−(
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)k
− e−(
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λ
)k )

(12)

Note that the probability that an event happens between time tx

and ty is given by Pr(tx, ty) = e−( tx
λ

)k − e−(
ty
λ

)k (for Weibull
distribution).

The benefit can be estimated as one checkpointing cost saving
(β) multiplied by the probability that the failure happens beyond
time t3.

performance gain = βe−(
t3
λ

)k (13)

Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:

βe−(
αmax−oci+αoci+β
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)k = (αmax−oci − αoci)e
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If the αlazy (Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at αmax−oci.

Note that our estimation of the maximum value of checkpoint
interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.

Being Lazy is good (but with some bounds!)

[DSN 2014] Lazy Checkpointing: Exploiting Temporal Locality in Failures to Mitigate 
Checkpointing Overheads on Extreme-Scale Systems



Optimal Checkpointing under Power-Constraints TABLE II: Benchmark domain and problem size

Rodinia
Problem

NPB
Problem

size size
LUD (LU Decomposition) 4M pseudo applications
LavaMD 4K LU, SP & BT B
CFD (CFD Solver) 97K kernels

FT, MG, IS, EP & CG B

IV. POWER CAPPING EFFECTS ON PERFORMANCE

The first step toward obtaining the optimal checkpointing
interval under power-capping is to understand how power-
capping affects: (a) the execution time of simulation (compu-
tation time), (b) the execution time of checkpointing, and (c)
system reliability. In this section, we focus on first two goals,
i.e., how power capping affects the performance/execution time
of application computation phase and checkpointing phase.

First, we present results that help us understand how dif-
ferent power capping affects the execution time of application
computation phase. Fig. 1 shows the normalized execution
time for a set of scientific benchmarks from linear algebra,
computational fluid dynamics, and molecular dynamics do-
mains (Table II), on two different platforms (Section III). We
observe that the execution time increases non-linearly across
all the benchmarks on both platforms. This indicates that power
capping affects the computation time significantly, although the
degree of effect may vary across benchmarks and platforms.
We point out that the average power consumption for the
benchmarks on Xeon E5-2670 platform ranges from 63 watts
to 78 watts, and the minimum package power consumption that
Intel power governor can enforce is approximately 23 watts on
this platform. This implies that the range for reasonable power
caps should between 23 watts and 63 watts to observe the effect
on performance. Therefore, we choose power capping levels of
60, 50, 40, and 30 watts for Xeon E5-2670 platform. Similarly
for Xeon E5-2630 platform, we choose power caps 50, 45, 40,
35, 30, and 25 watts taking average power consumption of the
benchmarks into consideration.

To take this effect into consideration toward obtaining
optimal checkpointing interval, we attempt to capture this trend
mathematically. We find that normalized execution time under
power capping for a given benchmark can be fitted using an
exponential function. The R-squared values of regression func-
tions are above 0.97 for all the benchmarks on both platforms
indicating statistically sound fit. Since the benchmarks are
affected differently by power capping in terms of execution
time, the parameters or regression coefficients are different for
each application. The exponential regression functions can be
generalized as Equation 1.

Tcomp(Pi)/Tcomp = A× eB×Pi + 1 (1)

Tcomp represents computation time without power capping,
and Tcomp(Pi) denotes the computation time under power cap
Pi. e is Euler’s number.

The upper bound and lower bound regression functions for
both platforms are shown in Fig. 1. From these results we
note that applications and platforms both have impact on the
coefficients in fitted exponential functions. We study the impact
of these co-efficients in later sections; in particular how these

co-efficients affect the optimal checkpointing interval and total
execution time under different power capping scenario.

0
1

2
3

4

Power Cap Level (watt)

Ex
ec

ut
io

n 
Ti

m
e

0
1

2
3

4

Power Cap Level (watt)

Ex
ec

ut
io

n 
Ti

m
e

0
1

2
3

4

Power Cap Level (watt)

Ex
ec

ut
io

n 
Ti

m
e

0
1

2
3

4

Power Cap Level (watt)

Ex
ec

ut
io

n 
Ti

m
e

0
1

2
3

4

Power Cap Level (watt)

Ex
ec

ut
io

n 
Ti

m
e

0
1

2
3

4

Power Cap Level (watt)

Ex
ec

ut
io

n 
Ti

m
e

●
●

●

●

0
1

2
3

4

Power Cap Level (watt)

Ex
ec

ut
io

n 
Ti

m
e

0
1

2
3

4

Power Cap Level (watt)

Ex
ec

ut
io

n 
Ti

m
e

0
1

2
3

4

Power Cap Level (watt)

Ex
ec

ut
io

n 
Ti

m
e

●
●

●

●

0
1

2
3

4

Power Cap Level (watt)

Ex
ec

ut
io

n 
Ti

m
e

0
1

2
3

4

Power Cap Level (watt)

Ex
ec

ut
io

n 
Ti

m
e

60 50 40 30

●

●

CG
MG
LU
FT
BT
SP

LUD
IS
EP
CFD
lavaMD

CG : y = 22e(−0.08x) + 1
lavaMD: y = 35e(−0.12x) + 1

(a) Xeon E5-2670
0

1
2

3
4

Power Cap Level (watt)
Ex

ec
ut

io
n 

Ti
m

e
0

1
2

3
4

Power Cap Level (watt)
Ex

ec
ut

io
n 

Ti
m

e
0

1
2

3
4

Power Cap Level (watt)
Ex

ec
ut

io
n 

Ti
m

e
0

1
2

3
4

Power Cap Level (watt)
Ex

ec
ut

io
n 

Ti
m

e
0

1
2

3
4

Power Cap Level (watt)
Ex

ec
ut

io
n 

Ti
m

e
0

1
2

3
4

Power Cap Level (watt)
Ex

ec
ut

io
n 

Ti
m

e
0

1
2

3
4

Power Cap Level (watt)
Ex

ec
ut

io
n 

Ti
m

e

●

●
●

●
●●

0
1

2
3

4
Power Cap Level (watt)

Ex
ec

ut
io

n 
Ti

m
e

0
1

2
3

4
Power Cap Level (watt)

Ex
ec

ut
io

n 
Ti

m
e

●

●

●
●

●●

0
1

2
3

4
Power Cap Level (watt)

Ex
ec

ut
io

n 
Ti

m
e

0
1

2
3

4
Power Cap Level (watt)

Ex
ec

ut
io

n 
Ti

m
e

50 45 40 35 30 25

●

●

MG
FT
BT
SP
LU
CG

LUD
IS
lavaMD
CFD
EP

MG : y = 24e(−0.1x) + 1
EP: y = 18e(−0.11x) + 1

(b) Xeon E5-2630

Fig. 1: Effect of power capping on compute phase of bench-
marks on different platforms.
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(b) Checkpointing Time

Fig. 2: Effect of power capping on checkpointing phase of
benchmarks: BLCR checkpointing library is used and Check-
pointing time is normalized by the checkpointing time without
any power capping.

Next, we present results that help us understand how differ-
ent power capping affects the execution time of checkpointing
phase. Checkpointing is an I/O intensive operation in contrast
to computation intensive scientific simulation applications.
Therefore, one can reasonably expect to observe different
power capping effects on checkpointing phase than on compute
phase. We use BLCR to perform checkpointing on three
benchmarks (LU, SP, and BT). We find similar results for other
benchmarks and platforms, but due to space limitation we only
present representative results that capture trends for all the
benchmarks. Fig. 2 shows the computing and checkpointing
power consumption and execution time on Xeon E5-2630
platform under different power caps. Notice the two dips
in the Fig. 2 (a) which is corresponding to two checkpoint
phases. Checkpointing power consumption under all power
caps are similar (approximately 21.4 watts). The effect of
power capping on checkpointing time can be captured by the
Eq. 2.

β(Pi) = β (2)

β represents time needed to take a checkpoint without power
capping, and β(Pi) denotes time needed to take a checkpoint
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Fig. 5: Temperature and MTBF data of top, middle, and
bottom cages on Titan. MTBF is calculated according to the
total number of failures across cabinets, while temperature is
calculated based on each individual cabinet.

B. Temperature Effects on MTBF

As discussed in the previous section, we relate power
capping and system reliability by understanding how power
capping affects temperature and then how temperature im-
pacts the MTBF of the system. Previous works have shown
the evidence that temperature can affect the overall system
reliability [25]–[29].

In this section, we establish how temperature affects the
MTBF of the system. For this purpose, we take advantage
of Arrhenius Equation [30], which has been shown to fit
computing systems [31] defining mean time between failure
(MTBF) dependence on temperature.

MTBF (Pi) = MTBFbase/FA(TEMP (Pi)) (4)

FA(x) is the acceleration factor under a given temperature x,
as defined in Equation 5.

FA(x) = e
Ea
k ×(1/TEMPbase−1/x) (5)

k is Boltzmann constant which equals to 8.617×10−5 eV/°K.
Ea represents activation energy. Using the Titan supercom-
puter’s data, we demonstrate that this relationship holds true
in a large-scale HPC computing facility. Fig. 5 shows the
temperature and MTBF data for different levels on cages in
the cabinet for the Titan supercomputer. Each server cabinet in
Titan consists of three cages, top, middle, and bottom. Cold air
flows from bottom cage to top cage, which creates a gradient
in ambient temperature. The temperature increases as we go
from bottom cage to the top cage and hence, lower cages tend
to have shorter MTBF. We set MTBFbase and TEMPbase

as MTBF and average temperature of bottom cage. Then, we
calculate temperature for middle and top cages based on MTBF
of corresponding cage level using Equation 4. As shown in Fig.
5, temperature data for middle and top cages closely match
the field data for the empirical value of activation energy,
Ea = 0.7eV . We also plot the variance in the temperature data
to show that it falls within the range and has similar trend.

This mathematical relationship can be used to model the
system’s reliability behavior and its impact on the optimal
checkpointing interval. However, it is important to note the
potential limitation and scope of this approach. We recognize
that power-capping alone may not be responsible for tempera-
ture of different computing components. The inefficiencies in

power/cooling infrastructure may cause temperature variability,
in addition to what may be caused by the power-capping alone.
Our approach doesn’t directly and explicitly model such vari-
ance caused by the power/cooling infrastructure itself. Focus
of this paper is to understand the impact of power-capping on
checkpointing decisions, although other environmental condi-
tions may also contribute toward such decision. We also note
that power/cooling infrastructure can not completely mitigate
the temperature’s impact on system MTBF without dynami-
cally changing the cooling infrastructure load. However, cur-
rent HPC facilities often do not react dynamically to load-
changes in order to adjust cooling resources. They are typically
designed for a fixed load and therefore, power capping effect
on the temperature will exist in such systems. Therefore, it
is important to explicitly model and understand the power-
capping’s effect on checkpointing decisions, performance and
energy consumption. Finally, we also note that we do not
model the effect of variance in temperature on failures [29]
since the presence of such effects in the Titan supercomputer’s
failure and temperature logs was not statistically significant.

Finding 3: The system MTBF decreases with increase
in temperature. The effect of temperature on the system MTBF
can be modeled by Arrhenius Equation. We also show that the
field data obtained on Titan validates this relationship.

VI. POWER CAPPING EFFECTS ON THE OCI

TABLE III: Symbols and Definitions

Symbols Definitions
Pi power cap
α checkpointing interval

β, β(Pi) time to take a checkpoint
γ time to restart from a failure
ϵ fraction of lost work
TEMPbase baseline temperature
MTTFbase baseline MTTF under TEMPbase

TEMP (Pi) temperature under power cap Pi

FA(x) acceleration factor under temperature x
Ttotal, Ttotal(Pi) total execution time

Tcomp, Tcomp(Pi) total computation time

Tchkp, Tchkp(Pi) total time in taking checkpoints

Twaste, Twaste(Pi) total wasted time
Pcomp computing power consumption
Pchkp checkpointing power consumption

Etotal, Etotal(Pi) total energy consumption

Ecomp, Ecomp(Pi) total computation energy

Echkp, Echkp(Pi) total energy in taking checkpoints

Ewaste, Ewaste(Pi) total wasted energy

T comp
waste, T comp

waste(Pi) total wasted computation time

T chkp
waste, T chkp

waste(Pi) total wasted checkpoint time

Trestart, Trestart(Pi) total time in restarting

* Symbols with overlines have the same meanings as the ones
without overlines, except that they are under power cap Pi.

In section VI-A, first, we revisit how the first order model
calculates the OCI [10], as shown in Equations 6 to 11. Then
we introduce our power capping aware OCI model based on
the first order model in section VI-B. In section VI-C, we
revisit the high order model [12] and develop our high order
power-aware OCI model using the same approach in first order
model. Table III lists all the parameters used in the models.
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Fig. 7: Execution time and energy consumption under various checkpointing intervals. Legends at the bottom represent execution
time (Ttotal), and legends at the top represent energy consumption. “Sim” is simulation results, “First” represents first order
model, and “High” denotes high order model. OCIs derived from prior models (i.e., α−

t and α−

e ) are marked with a triangle
facing upwards and OCIs calculated from our model (i.e., α+

t and α+
e ) are marked with a triangle facing the downwards.

mainly writes checkpoints to storage system. We simulate more
than 40 checkpointing intervals under each power cap.

We make several observations from the Fig. 7. First, we
find that across various power caps, the power capping aware
model predicted OCI closely matches with the simulation
results corresponding to minimum execution time and energy
consumption. Second, the OCI predicted by previous models,
which do not take power capping effects into account, are
significantly far from optimal OCI points. In most cases, this
results in more than 10% performance loss and additional
energy consumption. We also notice that the difference be-
tween the first and high order model is not significant in
the cases presented here. Finally, we also observe that the
power capping aware model results in significant savings as
the power cap becomes smaller. For example, the performance
difference between power capping aware OCI model and high
order model increases from 8.8% to 17.2% when power cap
drops from 60 watts to 25 watts. This is primarily because the
new model captures the MTBF change due to power capping
better as the power cap drops.

Finding 6: Our model predicted OCI closely matches
the minimal execution time and energy consumption achieved
by the simulation runs. The power capping aware model results
in significant performance and energy savings compared to
previous models. Also, these savings increase significantly as
the power cap gets tighter.

Next, we show that our model is validated for an exascale-
like system as well. Fig. 8 shows that the model closely follows
the simulation and power capping aware model predicts OCI
accurately. Interestingly, the improvements in performance and
energy due to new model is higher compared to the petascale
system. This is because at exascale the MTBF becomes smaller
and hence, previous models take checkpoint more frequently
and incur very high I/O overhead. However, the power capping
aware model adjusts the OCI taking both the system scale and
power capping into account. It estimates the OCI to be a bit
higher and hence, results in significantly less I/O overhead.
As a key summary, Fig. 9(a) shows that applying our power
capping aware OCI model can reduce the total execution time
and energy consumption, compared to prior OCI models at
both peta- and exa-scale. We observe that for a petascale
system execution time can be improved between 8.8% to
17.2% using the high order power capping aware OCI model.
This effect is even more pronounced for exascale system where
execution time can be improved between 49.4% to 52.9%
using the high order power capping aware OCI model. Similar
savings can be observed for energy consumption as well when
applying power capping aware OCI model.

In Fig. 7 and 8, it can be noticed that the execution time and
energy curves shift upward when the power cap is reduced. To
illustrate and understand this trend better, we show Fig. 9(b)
where the execution time curve is plotted for a power cap of
50 watt, 40 watt, and 30 watt. α+

t and α−

t are also marked
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(c) Power Cap 40 watts
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(d) Power Cap 30 watts

Fig. 8: Execution time and energy consumption under various checkpointing intervals for exascale system. Legends have the
same meanings as in Figure 7.

0 

10 

20 

30 

40 

50 

60 

60
w
 

55
w
 

50
w
 

45
w
 

40
w
 

35
w
 

30
w
 

25
w
 

%
 R
ed

uc
(o

n 

Time Exa  Energy Exa 
Time Peta  Energy Peta 

(a)

Checkpoint Interval (Hours)Checkpoint Interval (Hours)Checkpoint Interval (Hours)

0
60

0
12

00
18

00
24

00

0 2 4 6 8 10 12 14

Ex
ec

ut
io

n 
Ti

m
e 

(H
ou

rs
)

50w 40w 30w αe
+ αe

−

(b)

Fig. 9: Improvement in performance and energy consumption
at petascale and exascale under different power caps (a), and
execution time curves under different power capping levels
with OCIs for power aware model and prior model without
power capping awareness (b).

for each power cap in the figure. Notice that α−

t are on same
vertical line because power cap unaware OCI stays the same.
On the other hand, as the power cap is reduced the curves
shift upward due to increased execution time, and the curve
shifts towards the right due to increasing MTBF. Therefore, α+

t
increases as the power cap decreases due to change in MTBF.
Prior models can not take this effect into account and lead to
suboptimal OCI estimation. This explains why and how the
power capping aware model outperforms the prior models in
different situations.

Finding 7: As the system scale increases, the benefit of
power capping aware OCI model also increases significantly
compared to the prior models.

Next, we show that it is critical to choose the correct
power cap level to achieve minimum execution time and
energy consumption. Fig. 10(a) shows the best performance
is achieved when power cap is 50 watts, and the lowest
energy consumption is achieved when power cap is 45 watts.
This illustrates that the optimal power capping level itself
depends upon the metric of optimization (e.g., performance,
and energy). We also point out that the corresponding OCI on
these power capping levels would be different as well, this can
be obtained via our model. Note that this result includes the
failure events, checkpointing, and restart phase.
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Fig. 10: Total execution time and energy consumption under
various power caps with the optimal checkpointing interval (a),
and when checkpointing overhead is ignored (b).

On the other hand, the results in Fig. 10(b) do not take
failures, checkpoint, and restart into account. Interestingly, in
this case the lowest execution time is achieved with power
cap of 60 watt, and least energy consumption is observed
for power cap of 35 watts when we do not consider failures,
checkpoint, and restart. This is a critical finding that illustrates
that optimal power cap levels can not alone be decided by
how power capping affects the application in isolation, without
taking failures, checkpointing, and restart phase into account.
These shifts in optimal power caps are caused by the impact of
power capping on MTBF. We find that using 45 watt power cap
instead of 35 watt power cap leads to 20.2% savings in energy
consumption. Note that this reduction in energy consumption
is between power-unaware model based OCI at 35 watt and
power-aware model based OCI at 45 watts. Similarly, using 50
watt power cap instead of 60 watt power cap leads to 12.6%
reduction in execution time.

Finding 8: The optimal power cap levels for minimizing
execution time and energy consumption are different and
so are their corresponding OCIs. The optimal power cap
levels for minimizing execution time and energy consumption
change once failures, checkpoint, and restart phases are taken
into account. The corresponding difference in execution time
and energy consumption is significant. Our results also show
that power capping aware OCI model leads to significant
improvements.
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Under power-capping optimal checkpointing interval is quite 
different than traditional optimal checkpointing interval

Optimal power capping level is 
different than no-checkpointing case. 

[DSN 2016] Power-capping Aware Checkpointing: On the Interplay among Power-capping, Temperature, 
Reliability, Performance, and Energy
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