
Formal Security Analysis of
Smart Embedded Systems!

!
Farid Molazem Tabrizi !
Karthik Pattabiraman!

!
http://blogs.ubc.ca/karthik/!

!

1!

IoT Systems!

2!

Security Attacks against IoT

3

Challenge!

•  No systematic technique to automatically find
security vulnerabilities in IoT devices!

•  Large attack surface!

•  Attacker often has physical access!

•  Devices are often resource constrained!

4!

Problem

5!

embedded
device!

void foo() {!
 …}!

int bar() {!
 …!
}!

Environment

Attacker!

Action

Enumerate all possible attacks!

Security Analysis
● Attack trees [Byres 04, Morais 09]
● Predefined attack goals
● Manual search

● Attack graphs [Jha 02, Sheyner 02]
● Need vulnerabilities of the hosts

● Formal analysis [Delaune 10, Miculan 11]
● Targets well-defined protocols

6

Our Approach: Idea
•  IoT devices perform specific tasks

●  Define the right abstraction
•  Not too low level, not too high level

●  Allows us to systematically find vulnerabilities

Abstraction!

7

High-level picture

8

System !
specification!

Security expert! Formal model !
of !

the system!

Formal model !
of !

attacker!

User!

Source code!

Attacks!

Abstraction

System
Model!

Attacker
Model!

Analysis!

Attacks!

Rewriting Logic!

9

Abstraction: System Model

Start è sensorData(0, 0)!
sensorData(r, n) è sensorData(r, n) sensorData(r+1, 0)!
sensorData(r, n) è sensorData(r, n+1)!

start! Receive
data!

Store
data!

Rewriting logic:!
•  Rewrite rules!
•  Equations!

10

Abstraction: Attacker Model

sensorData(c1, v1) sensorData(c2, v2) sensorData(c3, v3)è !
sensorData(c1, v1) sensorData(c3, v3) if c2 = i!

Attacker action: !
e.g. access to the ith sensor channel!

State space

Unsafe
state

Start è receive(c1, v1) where v1 < 0!

Explicit model checking:!

11

Case study

12

•  SEGMeter: an open source smart meter

•  Sensor board: Receive raw data

•  Communication board: talk to server

•  Code base: Lua and C (~ 3000 LOC)

Threat model
• Access

• Actions

●  Drop messages
●  Replay messages
●  Reboot meter

13

Read/Write access to communication
interfaces[McLaughlin et al. 2010]!

!
Root access to a node in grid

network [Mo et al. 2012]!
!

Evaluation

14

Performance!

3.4 GHz CPU, 16GB RAM!

Using Maude [Clavel 15]:!
http://maude.cs.illinois.edu/!

!
Less than a second à up to 2 hours!

Evaluation

Practicality!

●  Query for paths to unsafe states

●  Some map to the same execution path

15

search sensor(N1, M1) sensor(N2, M2) sensor(N3, M3) ⇒ !
stored(N1, M1) stored(N2, M2) !

!

Attack Example 1: Rebooting

16

start!
Receive

new
data!

Add to
old data!

Send to
server!

Reboot!

S1 è S2 where data(s1) not sent & cycle=start!

Attack Example 1: Rebooting

17

Open file in
write mode

Vulnerability
window

Will lose data if
reboot

1.  function update_node_list()!
2.  all_data = get_node_list!
3.  all_data = merge_table(current,all_data)!
4.  data_file = assert(io.open(dataFile, “w”))!
5.  for key, value in pairs(node_list) do!
6.  data_file::write(data)!
7.  end!
8.  assert(data_file::close())!
9.  end !

Attack Example 2: Drop Messages

18!

Meter! Server!

Root
access to
a routing

node!

Add
IPTables
rule: drop
messages

to time
server!

Function confirm_time_is_OK()!
 while time_is_ok == false do!

 ...!
 time_is_ok = check_time()!

 if (time_is_ok == true) then !
 set_time()!

 break!
 end!
 end!
end!

Gets stuck
in the loop!

: iptables − A INPUT − d
ADDRESS − j DROP !

!

Attack Example 3: Spoofing

19!

Sensor
board!

Communi
cation
board!

Request!Data!

Normal behavior!

!
Find serial

communication
configuration (a
handful common

configs, a couple of
hundreds total

configs!

!
Use USB to 6-pin

serial connector from
laptop to meter!

!
Replay
data

request!

!
Receive

data on the
laptop –

data deleted
from sensor

board!

!
One of the

common configs
worked in our case!

Conclusion
•  IoT devices perform specific tasks

●  Formalize their operations
●  Formalize the attacker
●  Perform automated analysis
●  Find real vulnerabilities

!
Videos of attacks found by our technique:!
http://www.ece.ubc.ca/~faridm/acsac.html!

20

“Formal Security Analysis of Smart Embedded Systems”, !
Farid Molazem Tabrizi and Karthik Pattabiraman,!

Annual Computer Security Applications Conference (ACSAC), 2016 !

