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The security of web applications 
continues to be a challenging 

problem

vulnerabilities
left in the source code by
developers that make mistakes

attacks

SQL injection
XSS
RFI
...

Vulnerabilities in web applications

web attacks blocked per day - 2017

Symantec, June 2017



  

Vulnerability SQL Injection example



  

$u = $_POST[’user’];

$p = $_POST[’password’];

$q = “SELECT * FROM users
           WHERE user='$u' AND pass='$p'”;
$r = mysql_query($q);

any

$u = ' or 1=1 -- ;

$q = “SELECT * FROM users WHERE user='' or 1=1-- ' AND pass='any'”; 

$p = any;

$r = mysql_query($q);

Motivation | Vulnerability SQL Injection example

$q = “SELECT * FROM users WHERE user='' or 1=1; 

SQL injection
vulnerability
exploited !!
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SOURCE CODE STATIC ANALYSIS

● Objective: to find vulnerabilities in the applications' (source) 
code automatically

– Similar to compiler’s error checking but for vulnerabilities

– Similar to manual code reviewing but automatically

● Static: because the code is not executed 

Detect Vulnerabilities
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TAINT ANALYSIS

Analyses the source code, starting at every entry point, 
propagating taintdness, checking if a sensitive sink is fed with 
tainted data

WAP | Detect Vulnerabilities | Source Code Static Analysis  

$u = $_POST[’user’];

$p = $_POST[’password’];

$q = “SELECT * FROM users WHERE user='$u' AND pass='$p'”;

$r = mysql_query($q);

Web Application Protection

SQL injection
vulnerability
detected!!
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TAINT ANALYSIS

Analyses the source code, starting at every entry point, 
propagating taintdness, checking if a sensitive sink is fed with 
tainted data

WAP | Detect Vulnerabilities | Source Code Static Analysis  

$u = $_POST[’user’];

$p = $_POST[’password’];

$q = “SELECT * FROM users WHERE user='$u' AND pass='$p'”;

$r = mysql_query($q);

$u = $_POST[’user’];

$p = $_POST[’password’];

$uu = mysql_real_escape_string($u);

$pp = mysql_real_escape_string($p);

$q = “SELECT * FROM users WHERE user='$uu' AND pass='$pp'”;

$r = mysql_query($q);

some functions sanitize, so 
“untaint”, the data flow

SQL injection
vulnerability
detected!!



8 / 14

SECURE APPLICATTIONS

● Create secure applications is an important factor

● Knowledge about how to build secure code is required
– sanitize and/or validate entry points
– otherwise, vulnerabilities are left in the code

● Correct use of the functionalities of the programming language
– differentiate when to use include_once and include functions
– otherwise...

Secure Applications

Inclusion of code from a file
in another file

Code execution
inconsistencies

Circular dependencies

recursively
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CIRCULAR DEPENDENCIES

Secure Applications

// file_A.php

$a = $_GET['user'];

include_once('file_B.php');

echo $b; 

// file_B.php

$b = $a;

include('file_C.php');

echo $c; 

// file_C.php

include('file_A.php');

$c = $a;
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CIRCULAR DEPENDENCIES IN STATIC ANALYSIS

● Static analysis analyzes the code of include files for each time a 
include or include_once instruction appears

● If there are circular dependencies in the source code then they 
will be notice in static analysis

● Circular dependencies break static analysis process 

Static Analysis | Circular dependencies

● A infinite loop is created

● Code execution
inconsistency is generated 

Vulnerability detection
is broken
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RESOLVING CIRCULAR DEPENDENCIES USING STATIC ANALYSIS

Build execution file paths

● Get for each file its include files

● Create trees to represent the execution file paths, identifying 
the parents and children for each tree node

● Identify the circular dependency points using the parents and 
children information

Realize taint analysis

● Perform taint analysis in each execution file path

● For circular dependencies points
– include_once, the analysis stops there 
– include, the remaining code is analyzed

Static Analysis | Circular dependencies
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EXECUTION FILE PATH

Resolving Circular dependencies

// file_A.php

$a = $_GET['user'];

include_once('file_B.php');

echo $b; 

// file_B.php

$b = $a;

include('file_C.php');

echo $c; 

// file_C.php

include('file_A.php');

$c = $a;

file_A.php

file_B.php

file_C.php

file_B.php

file_C.php

file_A.php
Circular dependency

point
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SOME RESULTS

● We evaluate 4 static analysis tools with...

– include and include_once instructions

– include files with code and user functions

Results with circular dependencies points

● Some tools stop analysis for include_once

● Some tools stop analysis for include, resulting false negatives
● Some tools crash with include

Static Analysis | Circular dependencies

Circular dependencies is an effective problem
in static analysis tools
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Thank you!
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