
Ibéria Medeiros
LaSIGE, Faculty of Sciences, University of Lisboa

Detection of Vulnerabilities broken by
Circular Dependencies in Static Analysis

72nd
IFIPWG 10.4
Meeting

2 / 14

The security of web applications
continues to be a challenging

problem

vulnerabilities
left in the source code by
developers that make mistakes

attacks

SQL injection
XSS
RFI
...

Vulnerabilities in web applications

web attacks blocked per day - 2017

Symantec, June 2017

Vulnerability SQL Injection example

$u = $_POST[’user’];

$p = $_POST[’password’];

$q = “SELECT * FROM users
 WHERE user='$u' AND pass='$p'”;
$r = mysql_query($q);

any

$u = ' or 1=1 -- ;

$q = “SELECT * FROM users WHERE user='' or 1=1-- ' AND pass='any'”;

$p = any;

$r = mysql_query($q);

Motivation | Vulnerability SQL Injection example

$q = “SELECT * FROM users WHERE user='' or 1=1;

SQL injection
vulnerability
exploited !!

5 / 14

SOURCE CODE STATIC ANALYSIS

● Objective: to find vulnerabilities in the applications' (source)
code automatically

– Similar to compiler’s error checking but for vulnerabilities

– Similar to manual code reviewing but automatically

● Static: because the code is not executed

Detect Vulnerabilities

6 / 14

TAINT ANALYSIS

Analyses the source code, starting at every entry point,
propagating taintdness, checking if a sensitive sink is fed with
tainted data

WAP | Detect Vulnerabilities | Source Code Static Analysis

$u = $_POST[’user’];

$p = $_POST[’password’];

$q = “SELECT * FROM users WHERE user='$u' AND pass='$p'”;

$r = mysql_query($q);

Web Application Protection

SQL injection
vulnerability
detected!!

7 / 14

TAINT ANALYSIS

Analyses the source code, starting at every entry point,
propagating taintdness, checking if a sensitive sink is fed with
tainted data

WAP | Detect Vulnerabilities | Source Code Static Analysis

$u = $_POST[’user’];

$p = $_POST[’password’];

$q = “SELECT * FROM users WHERE user='$u' AND pass='$p'”;

$r = mysql_query($q);

$u = $_POST[’user’];

$p = $_POST[’password’];

$uu = mysql_real_escape_string($u);

$pp = mysql_real_escape_string($p);

$q = “SELECT * FROM users WHERE user='$uu' AND pass='$pp'”;

$r = mysql_query($q);

some functions sanitize, so
“untaint”, the data flow

SQL injection
vulnerability
detected!!

8 / 14

SECURE APPLICATTIONS

● Create secure applications is an important factor

● Knowledge about how to build secure code is required
– sanitize and/or validate entry points
– otherwise, vulnerabilities are left in the code

● Correct use of the functionalities of the programming language
– differentiate when to use include_once and include functions
– otherwise...

Secure Applications

Inclusion of code from a file
in another file

Code execution
inconsistencies

Circular dependencies

recursively

O
n

-g
o

in
g

 w
o

rk

9 / 14

CIRCULAR DEPENDENCIES

Secure Applications

// file_A.php

$a = $_GET['user'];

include_once('file_B.php');

echo $b;

// file_B.php

$b = $a;

include('file_C.php');

echo $c;

// file_C.php

include('file_A.php');

$c = $a;

10 / 14

CIRCULAR DEPENDENCIES IN STATIC ANALYSIS

● Static analysis analyzes the code of include files for each time a
include or include_once instruction appears

● If there are circular dependencies in the source code then they
will be notice in static analysis

● Circular dependencies break static analysis process

Static Analysis | Circular dependencies

● A infinite loop is created

● Code execution
inconsistency is generated

Vulnerability detection
is broken

11 / 14

RESOLVING CIRCULAR DEPENDENCIES USING STATIC ANALYSIS

Build execution file paths

● Get for each file its include files

● Create trees to represent the execution file paths, identifying
the parents and children for each tree node

● Identify the circular dependency points using the parents and
children information

Realize taint analysis

● Perform taint analysis in each execution file path

● For circular dependencies points
– include_once, the analysis stops there
– include, the remaining code is analyzed

Static Analysis | Circular dependencies

12 / 14

EXECUTION FILE PATH

Resolving Circular dependencies

// file_A.php

$a = $_GET['user'];

include_once('file_B.php');

echo $b;

// file_B.php

$b = $a;

include('file_C.php');

echo $c;

// file_C.php

include('file_A.php');

$c = $a;

file_A.php

file_B.php

file_C.php

file_B.php

file_C.php

file_A.php
Circular dependency

point

13 / 14

SOME RESULTS

● We evaluate 4 static analysis tools with...

– include and include_once instructions

– include files with code and user functions

Results with circular dependencies points

● Some tools stop analysis for include_once

● Some tools stop analysis for include, resulting false negatives
● Some tools crash with include

Static Analysis | Circular dependencies

Circular dependencies is an effective problem
in static analysis tools

Ibéria Medeiros
LaSIGE, Faculty of Sciences, University of Lisboa

Detection of Vulnerabilities broken by
Circular Dependencies in Static Analysis

72nd
IFIPWG 10.4
Meeting

Thank you!

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

