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2003

The feat made headlines around the world:
“Scientists Say Human Genome 1s Complete,” the

New York Times annoupncedin 2003. “T’he Human
Genome,” the journals S

ce and Nature said 1n

1dentical ta-dah cover lines Wixgiling the historic
achievement.
N
Fake
News

There was one little problem.

“It’s very fair to say the human genome was
never fully sequenced,” Craig Venter
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Human variation

It turns out, in the grand scheme, we're all very,
very similar, genetically: 99.9 percent of people's
genes are identical. It's in that last one-tenth of 1
percent where we find all of human variation.

More than 98% of the human Wait there is more:
genome does not encode protein Epi :
sequences, including most pigenome:
sequences within introns and most
intergenic DNA.

, /Fake
98% of human genome 1s “Junk
DN A” / \News
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‘ Epigenetics: What does the epigenome look like?

CHROMOSOME CHROMATIN FIBRE NUCLEOSOME

Genes are turned on and off by modifications
‘ ({’ to the tails of histones, such as acetylation.
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Don’t blame grandma yet, but your asthma may be her fault

Epigenetics is a potent weapon on the cancer batilefield

The new science of epigenetics
reveals how the choices you
make can change your genes

—and those of your ki

Epigenome: The s‘ym‘phon in your cells
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Why do we need to analyze the epigenome now?

* Lots and lots of epigenetic data

Histone DNA
modifications methylation

* Promuise that this data can be mined to create personalized
models of health and disease

» Ability to create very flexible models
— Nonparametric Bayesian Models
— Neural Networks

* Enough computing power

* Powertul priors that can defeat the curse of dimensionality
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Driver: Big Data Explosion in Genomics

Falling fast

In the first few years after the end of the Human Genome Project, the cost of
genome sequencing roughly followed Moore's law, which predicts exponential
declines in computing costs. After 2007, sequencing costs dropped precipitously.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Amount of genomics data is increasing
rapidly

Can we use this data to make
personalized medicine approaches
more disciplined?

What are the ML classifiers best suited
to this problem area

What does the input space look like?

Can we speed up the slow training
process?

— New datasets are being generated through
genomics experiments at a fast rate

— Diverse datasets need separate models to
be trained
Can we make use of large distributed
clusters to speed up training?

Can we make the overall development
of computational genomics algorithms
speedier and more efficient
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Epigenomic data for personalized medicine

* Create different models for classes of individuals or cell
types based on their features (demographics, -omics data,
...) (Training phase)

* Use model on hitherto unseen individual or cell type — then
predict the individual’s predilection for disease, etc.

(Prediction phase)
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Epigenomic big data

Hypersensitive CH.CO
Sites 3

“CH,CO

> CH,
omputational
E:;;e-seq ChiIP-seq predictions and NA-
RT-PCR
‘_,‘::::: ------ ‘\‘ "1 A” Gene ’,”’
P I - . ',"- -
/\/“\/\
Long-range regulatory elements cis-regulatory elements Transcript
(enhancers, repressors/ (promoters, transcription
silencers, insulators) factor binding sites)
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Precision epigenome-based therapeutics

* Which are the hotspots of genetic variants?
— Genomic enhancers (Non-codingregulatory DNA)

* Which are the mobile, endogenous fine-tuners of gene
expression?
— MicroRNA (Non-coding regulatory RNA)
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MicroRNA-based targeting

miRNA are 22 nucleotide (nt) strings of RNA, base-pairing with
messenger RNA (mRNA) to cause mRNA degradation or
translational repression

Can be thought of as biology’s dark matter: small regulatory RNA
that are abundant and encoded in the genome

Dysregulation of miRNA may contribute to diverse diseases

Canonical (1.e., exact) matches involve the miRNA’s seed region (nt
2-7) and the 3’ untranslated region (UTR) of mRNA and were
thought of as the only form of interaction

Recent high-throughput experimental studies have indicated the high-
preponderance of “non-canonical” miRNA targets
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Our Contributions in microRNA Target Prediction

* Many tools are available for miRNA target
prediction

— However, they require complicated configurations and
are computationally expensive

e Our contributions:

1. Most general microRNA targeting algorithms
2. Distributed pattern mining algorithm

3. Visualizing the predicted miRNA-mRNA mappings
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Problem Statement

* Predict if a miRNA targets ¢ Ideally we would want some
an mRNA (segment) experimentally verified edge
labels to train on

‘.\\lgizl:: lor0?
-

o o o

miIRNAs mRNAsegments  miRNAs mRNA segments

—* Edges with ground truth labels

— Edges whose labels have to
be predicted
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Methods: Feature Construction
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The alternating blue and green regions denote the 13 consecutive windows around the
miRNA target site (red). These are the windows where the average thermodynamic and
sequence features are computed.

Compute interaction profiles at two different resolutions

— Window size of 46 and using the entire miRNA: “site” curves
— Window size of 9 and only using the seed region of the miRNA: “seed” curves

Use coefficients of B-spline basis functions as features for classifier

We hypothesize that the curves are different for the positive and negative samples.
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Improving Classification Performance with
Kernel SVM

* Linear classifier suffers from high bias (large error
even on training set)

» Solution: Use more complex learning model

— Non-linear or Kernel SVM

* SVMs suffer from a widely recognized scalability
problem 1n both memory use and compute time.

« Kernel SVM computational cost: O(n?)

* Does not scale beyond a few thousand examples for
feature vector of dimension ~ 150

* Running serial version on entire dataset (300 GB)
will take 45.4x103 years!
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Making Kernel SVM Scale Up

* Biological msight: miRNAs within an miRNA family
share structural similarities

* Therefore, we create a separate non-linear classifier
for each miRNA family

* Within each family, we train in parallel using
Cascade SVM approach
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Results: ROC Curve for Linear and Non-linear SVM

1.
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ROC curves for the ensemble linear model and ensemble non-linear

model, obtained by varying the probability threshold for the output of
the SVM.

One possible operating region 1s FPR = 0.2: TPR for the linear model
1s 0.469, while the TPR for the non-linear model 1s 0.756.

TPR 1s 150% better than competition.
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Results: Feature Importance
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Visualization Snapshots
* Provided through a web server: http://cygnus.ecn.purdue.edu/
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TIRESIAS
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Context-Specific Prediction
* Goal

— Integrate expression data about miRNA-mRNA, with prior
sequence data, for predictions

— Perform prediction under dynamic conditions of interest, such as in
disease conditions and in specific tissues

e Prior work

— Lattle prior work can achieve the two goals above

— [Bioinformatics 2013]% can only handle linear effects and
downregulation

— Recent results show that the effects from multiple interacting
miRNASs 1s non-linear

— Recent results show that miRNA regulation can be upregulation

YIntegrating sequence, expression and interaction data to determine condition-specific miRNA regulation: Hai-Son Le,
Ziv Bar-Joseph
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Our Solution Approach: Tiresias

Tiresias computationally predicts miRNA targets under context-
specific conditions by incorporating expression-level data into
sequence-based prediction results

Tiresias decouples the problem making the learning easier
— The first stage estimates miRNA targets (as in Avishkar)

— The second stage estimates regulation weights based on the previous stage’s
outputs

Tiresias considers up-regulation and down-regulation simultaneously

Tiresias extends prediction to a complex non-linear regulation model
using two Artificial Neural Networks (ANNSs)

Tiresias characterizes the density of miRNA-mRNA interactions by
one single hyper-parameter (p) unlike prior work
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Our Solution Approach: Tiresias

h(x,y)
Dataset :: X : $ A
(TCGA) y | xy) | gkxy) f(x,s)
p T
X

Bayesian Optimization
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Regulation strength and direction

— Ground truth 0 0 0 4 1 0
—— Tiresias
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performs better than existing computational

methods such as GenMiR++, Elastic Net, and PIMiM.

Experimental results showed that Tiresias

For the TCGA breast cancer dataset, Tiresias showed a true positive rate of about 88%

in recovering the ground truth regulatory interactions between miRNAs and mRNAs.
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Expertise

« Computational biology
— Mining epigenomics and metagenomics data
— Data structures for efficient computing in genomics
— Federation of infrastructures for genomics
— Faster and more efficient evolution of new algorithms
— Predictive analytics for genome editing and therapeutic
targeting
* Data-driven cell engineering
— Efficient and precise genome editing

— Bridging the gap between systems biology and synthetic
biology

* Contact: Somali Chaterji; schaterj@purdue.edu
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