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2003
The feat made headlines around the world: 
“Scientists Say Human Genome is Complete,” the 
New York Times announced in 2003. “The Human 
Genome,” the journals Science and Nature said in 
identical ta-dah cover lines unveiling the historic 
achievement.

There was one little problem.
“It’s very fair to say the human genome was 
never fully sequenced,” Craig Venter

Fake 
News
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Human variation
It turns out, in the grand scheme, we're all very, 
very similar, genetically: 99.9 percent of people's 
genes are identical. It's in that last one-tenth of 1 
percent where we find all of human variation.

More than 98% of the human 
genome does not encode protein 
sequences, including most 
sequences within introns and most 
intergenic DNA.

Wait there is more: 
Epigenome!

98% of human genome is “Junk 
DNA”

Fake 
News
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Epigenetics: What does the epigenome look like?
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Epigenetics
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Why do we need to analyze the epigenome now?
• Lots and lots of epigenetic data

• Promise that this data can be mined to create personalized 
models of health and disease

• Ability to create very flexible models
– Nonparametric Bayesian Models
– Neural Networks

• Enough computing power
• Powerful priors that can defeat the curse of dimensionality
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Driver: Big Data Explosion in Genomics
• Amount of genomics data is increasing 

rapidly
• Can we use this data to make 

personalized medicine approaches 
more disciplined?

• What are the ML classifiers best suited 
to this problem area

• What does the input space look like?
• Can we speed up the slow training 

process?
– New datasets are being generated through 

genomics experiments at a fast rate
– Diverse datasets need separate models to 

be trained
• Can we make use of large distributed 

clusters to speed up training?
• Can we make the overall development 

of computational genomics algorithms 
speedier and more efficient
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• Create different models for classes of individuals or cell 
types based on their features (demographics, -omics data, 
…) (Training phase)

• Use model on hitherto unseen individual or cell type – then 
predict the individual’s predilection for disease, etc. 
(Prediction phase)

Epigenomic data for personalized medicine
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Epigenomic big data



10

Precision epigenome-based therapeutics
• Which are the hotspots of genetic variants?

– Genomic enhancers (Non-coding regulatory DNA)

• Which are the mobile, endogenous fine-tuners of gene 
expression?
– MicroRNA (Non-coding regulatory RNA)
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AVISHKAR
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• miRNA are 22 nucleotide (nt) strings of RNA, base-pairing with 
messenger RNA (mRNA) to cause mRNA degradation or 
translational repression

• Can be thought of as biology’s dark matter: small regulatory RNA 
that are abundant and encoded in the genome

• Dysregulation of miRNA may contribute to diverse diseases
• Canonical (i.e., exact) matches involve the miRNA’s seed region (nt

2-7) and the 3’ untranslated region (UTR) of mRNA and were 
thought of as the only form of interaction

• Recent high-throughput experimental studies have indicated the high-
preponderance of “non-canonical” miRNA targets

MicroRNA-based targeting
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Our Contributions in microRNA Target Prediction
• Many tools are available for miRNA target 

prediction 
– However, they require complicated configurations and 

are computationally expensive
• Our contributions: 

1. Most general microRNA targeting algorithms
2. Distributed pattern mining algorithm 
3. Visualizing the predicted miRNA-mRNA mappings 
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Problem Statement
• Predict if a miRNA targets 

an mRNA (segment)

miRNAs mRNA segments

1 or 0 ?

• Ideally we would want some 
experimentally verified edge 
labels to train on

1 or 0 ?

1
0

1

Edges with ground truth labels
Edges whose labels have to 
be predicted

miRNAs mRNA segments
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Methods: Feature Construction

• The alternating blue and green regions denote the 13 consecutive windows around the 
miRNA target site (red). These are the windows where the average thermodynamic and 
sequence features are computed. 

• Compute interaction profiles at two different resolutions
– Window size of 46 and using the entire miRNA: “site” curves
– Window size of 9 and only using the seed region of the miRNA: “seed” curves

• Use coefficients of B-spline basis functions as features for classifier
• We hypothesize that the curves are different for the positive and negative samples. 

Seed match siteRISC (complex)
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Improving Classification Performance with 
Kernel SVM

• Linear classifier suffers from high bias (large error 
even on training set)

• Solution: Use more complex learning model
– Non-linear or Kernel SVM

• SVMs suffer from a widely recognized scalability 
problem in both memory use and compute time.

• Kernel SVM computational cost: O(n3)
• Does not scale beyond a few thousand examples for 

feature vector of dimension ~ 150
• Running serial version on entire dataset (300 GB) 

will take 45.4×103 years!
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Making Kernel SVM Scale Up

• Biological insight: miRNAs within an miRNA family 
share structural similarities

• Therefore, we create a separate non-linear classifier 
for each miRNA family

• Within each family, we train in parallel using 
Cascade SVM approach
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Results: ROC Curve for Linear and Non-linear SVM

• ROC curves for the ensemble linear model and ensemble non-linear 
model, obtained by varying the probability threshold for the output of 
the SVM.

• One possible operating region is FPR = 0.2: TPR for the linear model 
is 0.469, while the TPR for the non-linear model is 0.756.

• TPR is 150% better than competition. 
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Results: Feature Importance
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Visualization Snapshots
• Provided through a web server: http://cygnus.ecn.purdue.edu/

Upregulation Downregulation
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TIRESIAS
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Context-Specific Prediction
• Goal

– Integrate expression data about miRNA-mRNA, with prior 
sequence data, for predictions

– Perform prediction under dynamic conditions of interest, such as in 
disease conditions and in specific tissues

• Prior work
– Little prior work can achieve the two goals above
– [Bioinformatics 2013]§ can only handle linear effects and 

downregulation 
– Recent results show that the effects from multiple interacting 

miRNAs is non-linear
– Recent results show that miRNA regulation can be upregulation

§ Integrating sequence, expression and interaction data to determine condition-specific miRNA regulation: Hai-Son Le, 
Ziv Bar-Joseph
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Our Solution Approach: Tiresias
• Tiresias computationally predicts miRNA targets under context-

specific conditions by incorporating expression-level data into 
sequence-based prediction results

• Tiresias decouples the problem making the learning easier
– The first stage estimates miRNA targets (as in Avishkar)
– The second stage estimates regulation weights based on the previous stage’s 

outputs

• Tiresias considers up-regulation and down-regulation simultaneously
• Tiresias extends prediction to a complex non-linear regulation model 

using two Artificial Neural Networks (ANNs)
• Tiresias characterizes the density of miRNA-mRNA interactions by 

one single hyper-parameter (ρ) unlike prior work
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Our Solution Approach: Tiresias

Bayesian Optimization

Dataset
(TCGA)
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Non-linear regulation and Regulatory 
network edge matrix
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Regulation strength and direction

Experimental results showed that Tiresias performs better than existing computational 
methods such as GenMiR++, Elastic Net, and PIMiM.
For the TCGA breast cancer dataset, Tiresias showed a true positive rate of about 88% 
in recovering the ground truth regulatory interactions between miRNAs and mRNAs.
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Expertise
• Computational biology

– Mining epigenomics and metagenomics data
– Data structures for efficient computing in genomics
– Federation of infrastructures for genomics
– Faster and more efficient evolution of new algorithms
– Predictive analytics for genome editing and therapeutic 

targeting 
• Data-driven cell engineering

– Efficient and precise genome editing
– Bridging the gap between systems biology and synthetic 

biology
• Contact: Somali Chaterji; schaterj@purdue.edu


