Spire:
Intrusion-Tolerant SCADA for the Power Grid

Amy Babay*, Thomas Tantillo*, Trevor Aron, Yair Amir
June 25, 2017

Distributed Systems and Networks Lab

Department of Computer Science
Johns Hopkins University
The move to IP makes SCADA vulnerable on several fronts:

• **SCADA system** compromises
 – SCADA Master – *system-wide* damage
 – RTUs, HMIs – limited local effects

• **Network** level attacks
 – Routing attacks that disrupt or delay communication
 – *Isolating critical components* from the rest of the network

• Therefore, SCADA systems must ensure *continuous availability* and *correct operation* in the presence of compromises and attacks at both the *system* and *network* level
Spire Overview

- Spire is a SCADA system that **continues to work** even if some critical components have been **compromised**
- **Intrusion tolerance** as the core design principle protecting several different layers of the system:
 - Intrusion-tolerant network
 - Intrusion-tolerant consistent state
 - Intrusion-tolerant SCADA Master
- Combines **proven open-source** components with new system components **built from scratch** to provide a **complete** top-to-bottom solution
- Open Source - http://dsn.jhu.edu/spire
• **Spines** (http://spines.org)
 – Intrusion-Tolerant Network

• **Prime** (http://dsn.jhu.edu/prime)
 – Intrusion-Tolerant Replication – BFT with performance guarantees under attack

• **SCADA Master** (http://dsn.jhu.edu/spire)

• **PLC/RTU Proxy** (http://dsn.jhu.edu/spire)

• **Pvbrowser-based HMI** (https://pvbrowser.de/pvbrowser/index.php)
 – Rainer Lehrig and his group

• **OpenPLC** (http://www.openplcproject.com)
 – PLC Emulation – (Thiago Alves, Tommy Morris) University of Alabama, Huntsville

• **Multicompiler** (https://github.com/secsystems/sl/multicompiler)
 – Diversity (Michael Franz group at UC Irvine, Immunant)
Spire Architecture: Single Control Center

Internal Spines Network

- SCADA Master
 - Prime

External Spines Network

- pvbrowser HMI
- RTU / PLC Proxy
- RTU
- PLC
Pvbrowser is an open source SCADA software solution

- Used in real-world deployments: Romanian power distribution system covering 10,000 km² with 50 power switches
Spire in Action

Spire as used in the DoD ESTCP experiment March-April 2017
DoD ESTCP Experiment

- DoD ESTCP project at Pacific Northwest National Labs
 - Conducted by Resurgo
 - 3/27/17 to 4/7/17
- Comparing NIST-compliant SCADA architecture with Spire
 - Each attacked by Sandia National Labs red team
DoD ESTCP Results

- NIST-compliant system completely taken over
 - MITM attack from corporate network
 - Direct access to PLC from operational network
- Spire completely unaffected
 - Attacks in corporate and operational network
 - Given complete access to a replica and code
 - Red team gave up after several days
Intrusion Tolerance State-of-the-Art in Research

- $3f+2k+1$ total replicas
- $2f+k+1$ connected correct replicas required to provide bounded delay

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Correct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proactive Recovery (PR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disconnected/Downed Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disconnected/Downed Site + PR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrusion + PR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disconnected/Downed Site + Intrusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disconnected/Downed Site + Intrusion + PR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bounded Delay

- Bounded Delay, except when rejuvenating any correct replica
- Eventual Progress – Human in the loop. Potentially powering up cold backup control center
- Eventual Progress – No bound. Network has to heal, crash has to be repaired, and/or intrusion needs to be cleansed

Incorrect System
Novel Resilient Configurations (7/7)

3+3+3+3 (progress: 7)

- **Complete solution for 4 total sites:** (2 control centers, 2 data centers)
- **Sweet-spot** balancing the number of data center sites, the number of total replicas, and the communication overhead

Operations:

- **Control Center 1**
 - Spines
 - HMI
 - SM
 - SM
 - SM

- **Data Center 1**
 - SM
 - SM
 - SM

- **Control Center 2**
 - Spines
 - HMI
 - SM
 - SM
 - SM

- **Data Center 2**
 - SM
 - SM
 - SM

- **Substation**
 - RTU
 - Physical Equipment

Legend:

- **Bounded Delay**
 - Bounded Delay, except when one control center is down and the other control center has only one uncompromised replica and that replica is currently rejuvenating
 - Bounded Delay, except when rejuvenating any correct replica
 - Eventual Progress – Human in the loop. Potentially powering up cold backup control center
 - Eventual Progress – No bound. Network has to heal, crash has to be repaired, and/or Intrusion needs to be cleansed
 - Incorrect System
Wide Area: Update Latency Histogram

- 30-hour wide-area deployment of 3+3+3+3 configuration
 - Control centers at JHU and SVG, data centers at WAS and NYC
 - 10 emulated RTUs sending periodic updates
 - 1.08 million updates (108K from each RTU)
 - Over 99.999% of updates delivered within 100ms (56ms average)
The Spire Forum

- Forum focused on Open Source Intrusion-tolerant control systems for the power grid
- Please join the Spire forum if interested

- http://dsn.jhu.edu/spire