The Concept of a Software-Free Resilience Infrastructure for Cyber-Physical Systems

Algirdas Avizienis
Distinguished Professor Emeritus, UCLA and Rector Emeritus, Vytautas Magnus University, Lithuania

IFIP WG 10.4 Meeting, Queenstown, New Zealand
January 26-30, 2017

The Evolution of the Means for Dependability
First Generation
First Generation:

Hardware error detection, then human response - ILLIAC 1 diagnostics, etc.

Following Generations:

The human is replaced by OS software and service processors SP. Probably the first SP was the Test and Repair Processor TARP in the JPL Self-Testing And -Repairing (STAR) computer, proposed in 1962, demonstrated and patented by NASA in 1969.

The Goal of my Invention

Use only hardware and firmware to provide a Resilience Infrastructure RI that complements the software and other fault tolerance capabilities of a Client system.

Make the RI fully fault-tolerant by using mature and well known hardware fault tolerance techniques, as used in the space industry.
Our Field’s Objective: deliver expected service under adverse circumstances

Beside dependability we have top concepts:

- fault management
- robustness
- resilience
- high confidence
- survivability
- high assurance
- trustworthiness
- self-healing
- reliability*
The Quantitative Definition of Dependability

The \textit{dependability} (of a system) is the ability to avoid service failures that are
(1) more frequent, and
(2) more severe
than is acceptable (to the user)

The Dependability Specification

1. Maximum Acceptable Frequency of Service Failures

2. Maximum Acceptable Severity of Service Failures:
 (a) Maximum Duration of a Service Outage
 (b) Unacceptable Modes of Service Failure

3. Fault Classes to Be Tolerated

4. Properties of the Use Environment

\textbf{Resilience} as defined by J.-C. Laprie in “From Dependability to Resilience”, \textit{Proc. DSN 2008, supplemental volume}, Anchorage, AL, June 2008
“Resilience is the persistence of dependability when facing changes.”

There are 3 dimensions of changes:

1. their nature: functional, environmental, technological (hardware and software)

2. their prospect: foreseen (new software versions), foreseeable (new hardware), unforeseen (new types of threats, new fault classes, etc.)

3. their timing: short term (seconds to hours), medium term (hours to months, as in new versioning or reconfigurations), long term (months to years, as in merger of airline or banking information systems, or in military coalitions)

The Definition of Resilience Used Here

- Nature of Change - functional, environmental and technological

- Prospect of Change - unforeseen only, that is: beyond the
original dependability specification of the Client system

- **Timing** of Change - short term only: nanoseconds to seconds

★ **Resilience** is the persistence of dependability when the Client system is affected by unforeseen short-term changes in its *function* (unknown design faults, vulnerabilities, physical damage, etc.), its *environment* (excessive radiation, large temperature changes, etc.), and its *hardware and software* (fault classes outside the Client’s dependability specification).

Properties of Resilience Infrastructure RI

1. the \(RI \) is a **tree structure** of Monitor Clusters \(MC \) connected to Client modules \(C \) to form the RI-tree.

![Diagram of RI tree structure]

- **Level 0:** Client
- **Level 1:** Crown
- **Level 2:** Branch
- **Level 3:** Root

C-MC represents Client Monitor Cluster

B-MC represents Branch Monitor Cluster

Root-MC represents Root Monitor Cluster
Properties of Resilience Infrastructure RI

(2) the RI is separate from Client system. Only connections are Error Messages EM and Data Requests DR from Client modules C and Client-specified Error Responses ER and Data Messages DM from the Monitor M of RI to C.
Properties of Resilience Infrastructure RI

(3) the RI is *generic* - it supports any Client System that can issue EM and DR and receive ER and DM that are specified by Client designers.

(4) the RI is *self-protecting* - it uses well-known hardware and firmware fault tolerance techniques. RI contains no software and does not need any external assistance for fault tolerance.

The Client System

- A Cyber-Physical System
- A Cyber-Physical System

- Replaceable C-Modules with f-t. Infrastructure Port and physical boundaries

- External Power On-Off Control of each C-module

The Monitor Module M

- The Crown Monitor C-M is connected to the I-Port of a C-Module

- The Branch Monitor B-M is connected to the I-Port of another Crown or Branch Monitor
• The Root Monitor Root-M is located at the bottom of the Monitor Tree and holds the Survival Module S

The Manager

• An external Entity authorized to access Root-Monitor Data and (if specified by the Client’s owner) to issue commands to the Monitor modules and the Client modules
An Elementary RI: the Fault Tolerance Path

- Two f.-t. inputs (EM): Heartbeat of C and Power Status of C
- Two f.-t. outputs (ER): Restart C and C-Power On/Off switch control
- Two functions: (1) replace failed C-module, (2) Client Power Off/On for catastrophic events.
Tolerance Path

- The Client supplies to the M a ROM with responses ER(i) for inputs EM(i) for \(i = 1, \ldots, n \)

- The ROM may be exchanged as requirements for values of ER(i) change.

An Elementary RI: the Data Path

- The C-Module sends data with a specific service request, for
specific service request, for example - execute a majority vote, or an N-version decision algorithm, etc.

An Enhanced RI: the Data Path

- The Data Path also includes fault-tolerant messaging between any pair of C-Modules and between the Manager (via the Root-Monitor) and any C-module
Functional Structure of one Monitor \(M(i) \)

Fault tolerance path A-signal path down data path up data path
Cluster $MC(i,j)$ implemented as a Self-Checking Pair of Monitors $M(i,j,k)$

The M-Cluster Root-MC

TMR with two spares and degradation
$S3^*$ is the Survival Module Cluster

IR Power
Properties of Resilience Infrastructure RI

(1) the RI is a **tree structure** of Monitor Clusters MC connected to Client modules C to form the RI-tree.

- **Level 0**: client
 - **Level 1**: crown
 - **Level 2**: branch

US Patent 7,908,520 B
One Half of Survival Module S (Part 1)

US Patent 7,908,520 B

Legend:
- M-bus
- A-line

Clock from other S3 nodes → Fault-tolerant clock → clock to other S3 nodes

one for both halves

To IC bus:

Clock → System Time Counter → System time

Clock → Interval Timer Power-off Intervals → Interval time

from IC-bus → OR status register → OR status

M-cluster status → M-cluster status

Sequencer input from Part 2 to all registers
In Conclusion: Will the RI Be Used?

- NO: Legacy favors software command of recovery!
• **YES:** A new software-free “last line of defense” will be needed in cyber-physical systems of the future!!!

• Our favorite application of the RI - the spaceship for human visit to Mars and the habitation on Mars

 We hope that it will happen!

• Algirdas, Rimas, and Audrius Avizienis