

Consolidation of IT and OT based on Virtualization and Deterministic Ethernet

Wilfried Steiner

wilfried.steiner@tttech.com

Smart Factories of the Future

- will combine IT (information technology) and OT (operations technology) in new and innovative ways.
- For example,
 - big data may help to find and to continuously update optimal configuration sets,
 - IT-like SW-update procedures may increase production flexibility (e.g., mass customization).

A Thing

A not very smart thing

Embedded System incl. I/O

Smartness by Internet of Things The "IT perspective"

Massive Compute/Storage

www.tttech.com

Embedded System incl. I/O

ΤΓΓech

(i)nternet of Smart Things **TITech** The "CPS (OT) perspective"

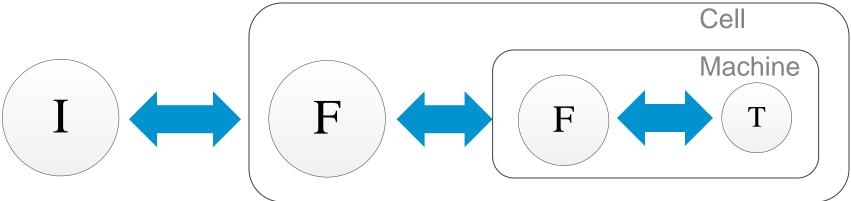
Massive Compute/Storage

www.tttech.com

Embedded System incl. I/O

How about a third "IT/OT" perspective?

MassiveFog NodeEmbedded SystemCompute/Storage(local)incl. I/O


Enables Communication/Computation Tradeoffs

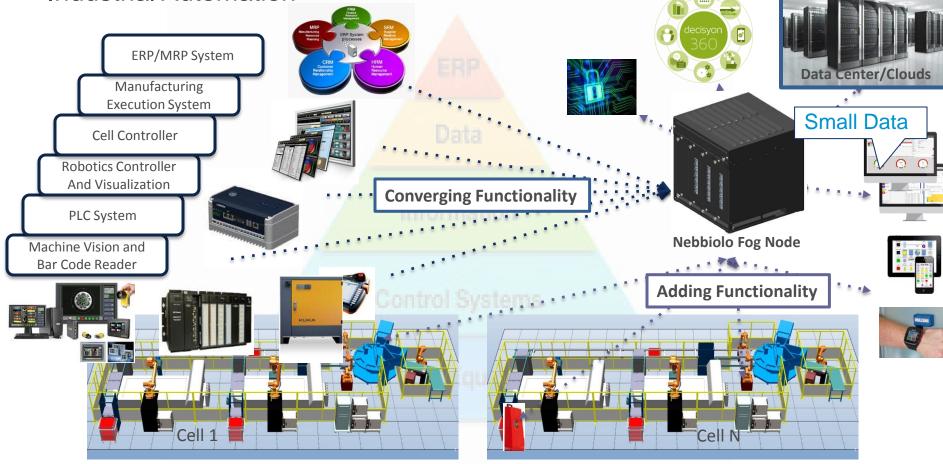
MassiveFog NodeSmart I/OCompute/Storage(local)

And it scales.

Massive Compute/Storage

Fog Node Fog Node Smart I/O (local) (local)

And it's real.



MassiveFog NodeEmbedded SystemCompute/Storageincl. I/O

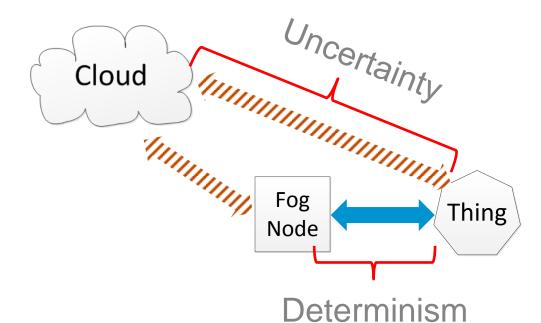
IT and OT Convergence in Industrial Automation

The Fog Node: Enabling Converged and Additional Functionality for Industrial Automation

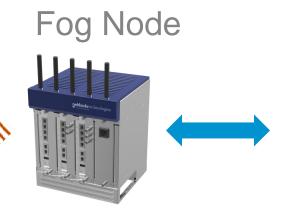
Motivation

- Position Network-Edge Computing as a new architecture paradigm for factory automation (and other industrial areas).
- Let the fog node mediate between the IT perspective and the OT perspective.
- Let the fog node be the means to integrate IT and OT.
- At some point in the integration process the fog node may even become obsolete.

Content


✓ Motivation

- Network Edge Computing
- Key Technology I: Virtualization
- Key Technology II: Deterministic Communication
- Example Use Cases
- Conclusions

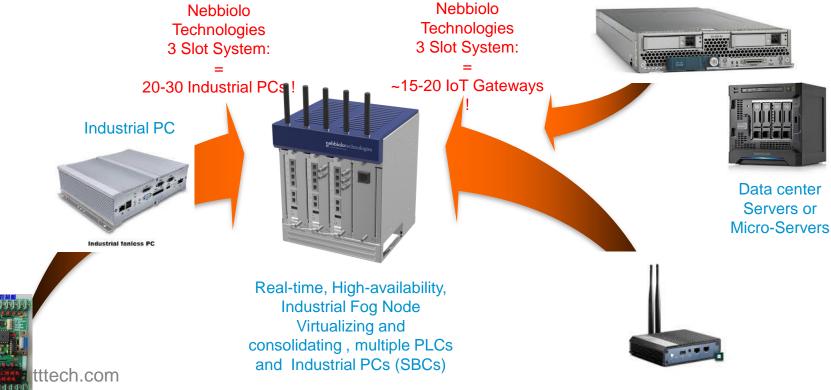


Technologies from Two Worlds

Information Technology Virtualization Big Data Automation Analytics Scalability SDN Security

Operations Technology Real-time Safety Reliability Control Data Acquisition Human Machine Interface

. . .


Fog Node is a platform to realize IT/OT Convergence

www.tttech.com

. . .

Hardware Competitive Landscape

Fog Node Hardware Components

- CPU complex
 - Range of X86 CPUs [Atom, Core (i3, i5, i7)]
 - Support for Skylake in near future
 - TPM chip for Trusted Boot support
 - ✓ 4GB to 16GB memory
- Storage
 - 64GB to 1TB SSD/SATA in M.2 form factor
- 🤣 GPU
 - Range of GPU capabilities supported with Auxiliary card

- Internal Networking
 - 10 Gbps SerDes capable
- Architecture supports following I/O:
 - Gigabit Ethernet, 10Gbe
 - legacy protocols
 - Deterministic Ethernet
- 📀 WiFi
 - 802.11b/g/n, 802.11ac, BTLE, LoRa, Zigbee
- Cellular
 - 4G LTE
 - GPS

Fog Node Software Components

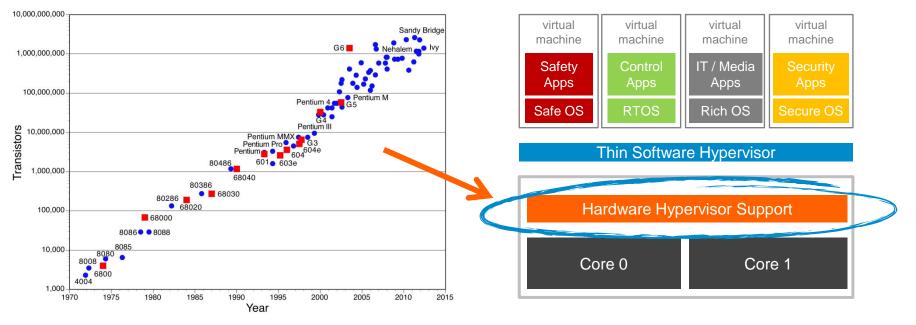
Secure Boot	Business Application	,	NFV and SDN System Managers Application hosting
	NFV Orchestration		Orchestration
	Application Hosting & Orchestration		 Middleware Abstraction Layer to support Plat One, IOTIVity Big Data, Analytics, Database, HA, ISSU etc., Infrastructure
	Middleware		Protocol Stacks, OPC UA, LAMP
	Infrastructure		Sensor Discovery, Normalization, Virtualization and data/event distribution
	Sensor Management and Virtualization		Virtualization modes that supports Full, Para, I/O and Pass thru
	Admin Plane		Chassis control software functions like power, temperature,
Secure Stack	RTOS/Kernel		 cooling Mgmt. Fog Node Driver Layer Fabric Control Function
	Hypervisor		
	Hardware		 Base Package shipped in all hardware Establishes secure connection to NSM

www.tttech.com

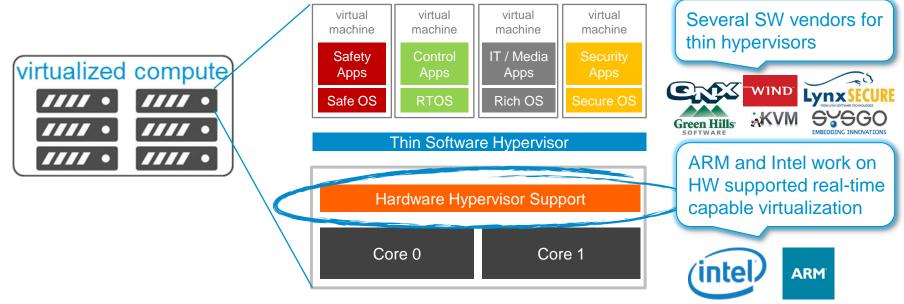
Manageability

Two Key Enabling Technologies

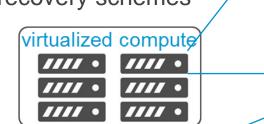
- Virtualization
 - to share the hardware resources between multiple Things,
 - with known and bounded interference.
- Deterministic Networking
 - to spatially separate I/O from computation,
 - to share the physical network between multiple Things,
 - with known and bounded interference.


Virtualization

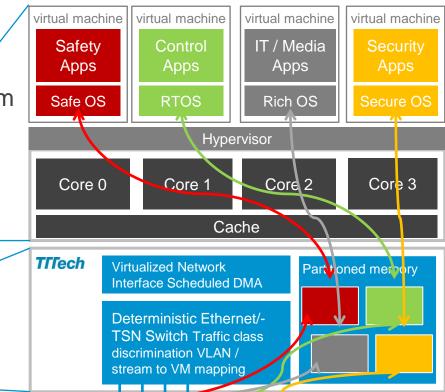
Virtualization


Moore's Law Alive and Well Heterogeneous Multi-Core

Hardware Supported Virtualization at Chip Level Possible



Hardware Supported Virtualization at the Chip Level is Essential for Cloud **TITech** and Fog Architectures



Combining virtualized computing with virtualization communication enables

- easy on the fly SW upgrades /
- flexibility to combine optional functionality on a single platform
- flexible fault-tolerance and recovery schemes

Deterministic Communication

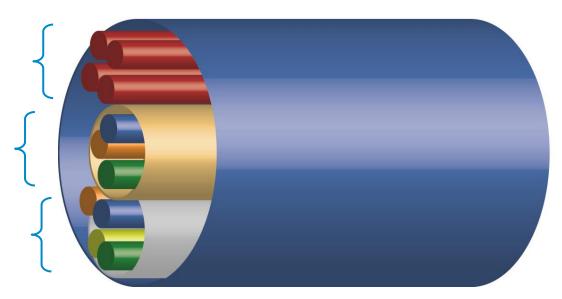
Deterministic Communication

- Known upper bounds on latency/jitter/buffer-size/etc. through the network
- Can be achieved by
 - synchronized communication (TT)
 - constrained unsynchronized communication (e.g., RC)
- Synchronized: Global Time + Communication Schedule
- Unsynchronized: Low Utilization + Network Analysis

Network Virtualization based on Deterministic Ethernet

Many Virtual Links on a Single Cable

Synchronous Traffic


- Safety and real-time control
- Steering, braking, ...

Streaming

- Audio
- Video

Standard Ethernet Traffic

- · Diagnostic over IP
- Download and Flash

IEEE 802.1 TSN Introduction

- IEEE 802 defines standards (used in IT)
- IEEE 802.1 is a working group
- IEEE 802.1 Time-Sensitive Networking (TSN) is a task group (others are, e.g., security)
- Members are from leading IT network companies, but also from industrial and automotive.

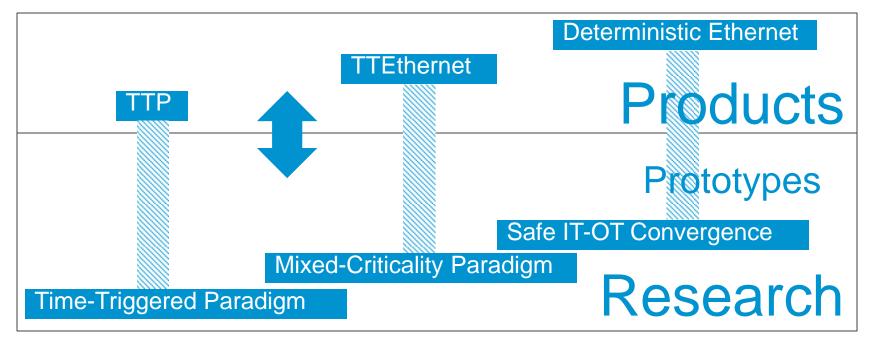
TSN – Time-Sensitive Ne	etworks Ensuring Reliable Networks								
802.1ASbt Timing and Synchronization: Enhancements and Performance Improvements									
802.1Qbv Enhancements for Scheduled Traffic: a basic form of <u>time-</u> <u>triggered communication</u>									
802.1Qbu Frame Preemption: a mechanism that allows to preempt a frame in transmit to intersperse another frame.									
802.1Qca Path Control and Reservation: protocols and mechanisms to set up and manage the redundant communication paths in the network.									
802.1CB Frame Replication and Elimi redundant copies of frames transm	ination for Reliability: to <u>eliminate</u> hitted over the redundant paths setup								
in 802.1Qca.	ng Mainstream								
	IT Networking Stand	ards (IEEE 802.1)							
www.tttech.com Copyright © TTTech Computer WWW.ttttech.com	64th Meeting of the IFIP 10.4 Working Dependable Computing and Fault								

Visegrád, Hungary, June 27-30, 2013

TSN projects overview (Jun/2016)

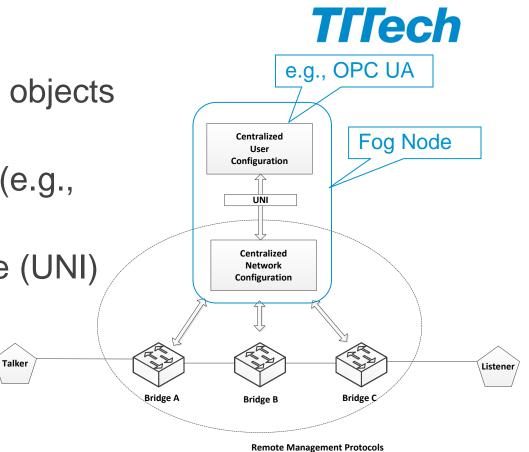
- .1AS-rev: synchronization improvements
- .1Qbv: time-triggered queues
- .1Qbu: frame preemption and resumption
- .1CB: stream identification and redundancy management
- .1Qca: redundant route configuration
- .1Qcc: configuration and SRP improvements
- .1Qch: cyclic queuing and forwarding
- .1Qci: per-flow policing and filtering
- .1Qcr: asynchronous traffic shaping
- .1Qcs: improved reservation/registration protocol (a.k.a. MRP++)

TSN projects status (Mar/2016)

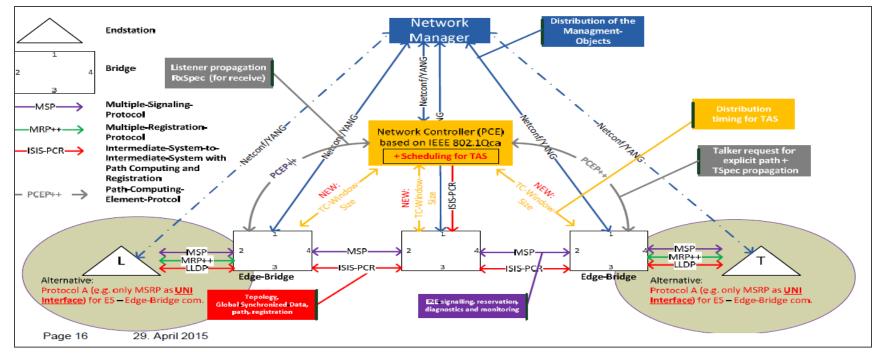


Functional Complete

Standard	Current Version	PAR Req/Appr.	Start TG Ballot	Start WG ballot	Sponsor Ballot	RevCom	
802.1Qbv	D3.1	15 May 12	2 Dec 13	4 Sep 14	17 Jul 15	published Mar/17, 2016	
802.1AS-rev	D2.0	10-Sep-11			1, 54, 15	paolisiica iliai 11, 2020	
802.1CB	D2.3	1-Mar-13					
802.1Qca	D2.1	5 Dec 12	9 Aug 13	5 Aug 14	12 Mar 15	published Mar/11, 2015	
802.1Qbu	D3.1	15-May-12	28-Jul-14	11-Dec-14	17-Jul-15	on hold until .3br is read	y (likely in May/2016)
802.1Qcc	D0.6	21-Oct-13	1-Dec-14	17-Mar-16			
802.1Qch	D0.1	1-Nov-14	17-Mar-16				
802.1Qci	D1.1	12-Mar-15	12-Nov-15	17-Mar-16			
802.1Qcr	PAR	17-Mar-16					Urgency-Based Shape
802.1Qcs	PAR Development	t 17-Mar-16					MRP++
				·			
		[Draft read	ly 🛛	External Re	view	

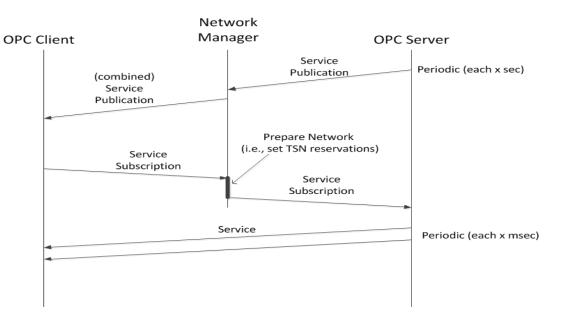

Deterministic Ethernet Tlech TSN+ TSN (Time Sensitive Networking) High Fully IEEE IEEE IEEE IEEE speed scheduled 802.1AS 802.1TSN 802.1D 802.1Q switching reliable networks IEEE 802.1Qbv Motion control VLAN Aware IEEE Time-triggered Bridge 802.1AS Queues SAE AS6802 E2E Software Fault-tolerant IEEE 802.1Qbu Packet Priority clock Stack Virtualization Preemption synchronization (QoS) / Partitioning Laver 2 Time-Triggered Switching **IEEE 802.1CB** 802.1Qat Stream Virtual Links E2E Redundancy Reservation (TTBuffers) synchronization Hardware IEEE 802.1Qci Timestamping Safety Policing Flow-based 802.1Qav Credit extensions Memory -based shapers (Safety Master) partitions www.ttfech.com "Standard TSN" based on AVnu interoperability specification **TTTech** extensions

Deterministic Ethernet Evolution **TITech**


TSN Configuration

- TSN defines managed objects (in YANG).
- Remote management (e.g., NETCONF) support
- User/Network Interface (UNI)

Network Management Proposal from Siemens

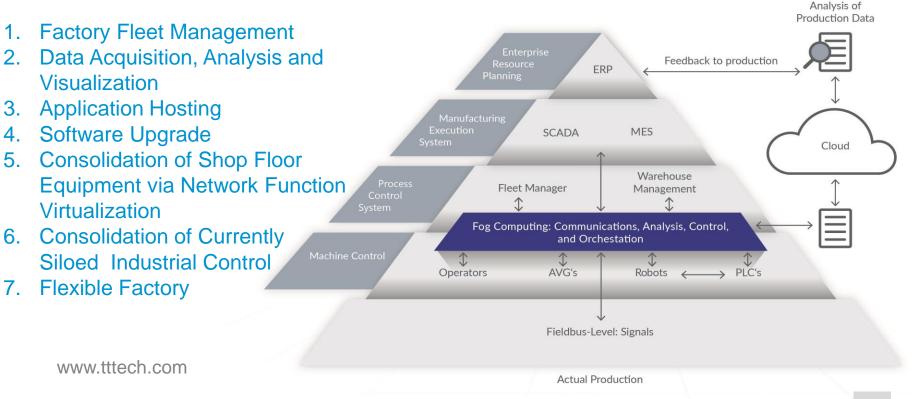


http://ieee802.org/1/files/public/docs2015/cc-goetz-MRPv2-MSP-v10.pdf

Centralized OPC UA & TSN integration

- Server publishes its services only to the Network Manager
- Network manager either forwards service publications or provides combined service publications for several servers
- Client subscribes by responding to the network manager
- Network manager prepares the network, when completed forwards service subscription to the server

ΤΓΓech


Wide Area Deterministic Networks **TFFech**

- IEEE 802.1 Time-Sensitive Networking (TSN) targets primarily layer 2 networks.
- IETF DetNet is introducing deterministic networking to layers 3 and above.
 - Current solutions are acceptable for VoIP but not for more demanding applications.

Use Cases

Industrial Use Cases

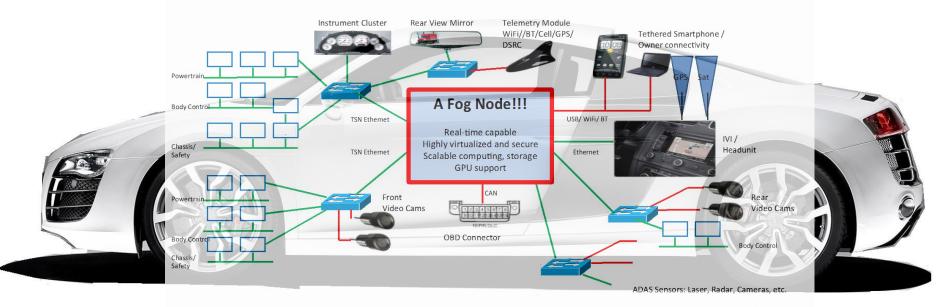
Automotive Use Case I

The traffic junction as a rich point of:

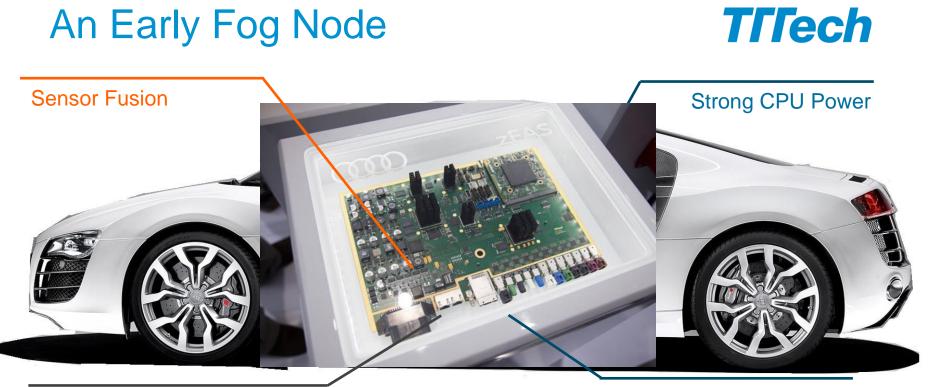
Communications

ehinte Detection

- Computing
- Storage



Perfect Position for a Fog Node!!!


Key Functional Location in Smart Cities!!!

Automotive Use Case II

ACK: Cisco

GPUs

TT Ethernet moving to TSN

Conclusions

Conclusions

- IT products and concepts are becoming more and more available for use as operations technology (OT).
- An intermediate layer between the cloud and the Thing seems to be a promising approach.
- We call this intermediate layer network-edge computing.
- Prototypes are ready and have been showcased in industrial settings.

Some Research Challenges

- Real-time control in an virtualized environment.
- Efficient safety certification of mixed-criticality platforms (like the fog node).
- Cybersecurity and security certification.
- Constraints:
 - there are many standards that we need to follow and
 - most of the standards solutions are imperfect.

Thech Ensuring Reliable Networks

Vienna, Austria (Headquarters) Phone +43 1 585 34 34-0 office@tttech.com

www.tttech.com

USA Phone +1 978 933 7979 usa@tttech.com Japan Phone +81 52 485 5898 office@tttech.jp China

Phone +86 21 5015 2925-0 china@tttech.com

Copyright © TTTech Computertechnik AG. All rights reserved.