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Getting Obvious Cases Covered Is Challenging

2

Extreme contrast No lane infrastructure Poor visibility

Unusual obstacles Construction Water (note that it appears flat!)

[Wagner 2014]



Need to test for at least ~3x crash rate to validate safety

• Hypothetical fleet deployment:  New York Medallion Taxi Fleet
– 13,437 vehicles, average 70,000 miles/yr = 941M miles/year

• 7 critical crashes in 2015
 134M miles/critical crash  (death or serious injury)

• Assume testing representative; faults are random independent
– R(t) = e-lamba*t is the probability of not seeing a crash during testing

• Illustrative: How much testing to ensure
critical crash rate is at least as good as
human drivers?   (At least 3x crash rate)
– These are optimistic test lengths…

• Assumes random independent arrivals
• Is simulated driving accurate enough?

Validating High-ASIL Systems via Testing Is Challenging
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[2014 NYC Taxi Fact Book]

Testing 
Miles

Confidence if NO
critical crash seen

122.8M 60%
308.5M 90%
401.4M 95%
617.1M 99%

[Fatal and Critical Injury data / Local Law 31 of 2014]

Using chi-square test from: http://reliabilityanalyticstoolkit.appspot.com/mtbf_test_calculator
Koopman & Wagner



But, Then There Is The Weird Stuff…
(Weirder than any one person can imagine)
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http://piximus.net/fun/funny-and-odd-things-spotted-on-the-road
http://blogs.reuters.com/photographers-blog/2012/11/26/house-in-the-middle-of-the-road/
http://edtech2.boisestate.edu/robertsona/506/images/buffalo.jpg



Legibility: can humans understand how ML works?

• Machine Learning “learns” from training data
– Result is a weighted combination of “features”

• Commonly the weighting is inscrutable, or at least not intuitive
– There is an unknown (significant?) chance results are brittle

• E.g., accidental correlations in training data, sensitivity to noise

Machine Learning Might Be Brittle & Inscrutable
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AlexNet:

Szegedy, Christian, et al. "Intriguing properties of neural 
networks." arXiv preprint arXiv:1312.6199 (2013).



Machine Learning requirements
are the training data

• V model traces reqts to V&V

• Where are the requirements in a
machine learning based system?
– ML system is just a framework
– The training data forms de facto requirements

• How do you know the training data is “complete”?
– Training data is safety critical
– What if a moderately rare case isn’t trained?

• It might not behave as you expect
• People’s perception of “almost the same” 

does not necessarily predict ML responses!

Where Are the Requirements for Machine Learning?
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Suggested Philosophy for Testing Autonomous Vehicles:
• Some testing should look for proper functionality

– But, some testing should attempt to falsify a correctness hypothesis
• Much of vehicle autonomy is based on Machine Learning

– ML is inductive learning…  which is vulnerable to “black swan” failures
– We’ve found robustness testing to be useful in this role

The Black Swan Meets Autonomous Vehicles
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Thousands of miles of “white swans”…
Make sure to fault inject 

some “black swans”



ASTAA:
Automated Stress Testing of Autonomy Systems
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Ballista Stress-Testing Tool
Robustness testing of defined interfaces
• Most test cases are exceptional
• Test cases based on best-practice software

testing methodology
• Detects software hanging or crashing
Earlier work looked at stress-testing COTS 
operating systems
Uncovered system-killer crash vulnerabilities 
in top-of-the-line commercial operating 
systems

NREC Safety Monitor
Monitors safety invariants at run-time
• Designed as run-time safety shutdown

box for UAS applications
Independently senses system state to 
determine whether invariants are 
violated
Firewalls safety-criticality into a small, 
manageable subset of a complex UAS; 
prototype deployed on Autonomous 
Platform Demonstrator (APD), a 9-ton 
UGV capable of reaching 80 km/hr

+

Approved for Public Release – Distribution is Unlimited 
(NREC case #: STAA-2012-10-17)



DISTRIBUTION A – NREC case number STAA‐2013‐10‐02



ASTAA Project at NREC found system failures due to:
Improper handling of floating-point numbers:
• Inf, NaN, limited precision
Array indexing and allocation:
• Images, point clouds, etc…
• Segmentation faults due to arrays that are too small
• Many forms of buffer overflow, especially dealing with complex data types
• Large arrays and memory exhaustion
Time:
• Time flowing backwards, jumps
• Not rejecting stale data
Problems handling dynamic state:
• For example, lists of perceived objects or command trajectories
• Race conditions permit improper insertion or removal of items
• Vulnerabilities in garbage collection allow memory to be

exhausted or execution to be slowed down

Example Autonomous Vehicle Defects Found via 
Robustness Testing

10DISTRIBUTION A – NREC case number STAA-2013-10-02


