CHALLENGES IN AUTONOMOUS
VEHICLE TESTING AND VALIDATION

(CLIFF'S NOTES VERSION FOR IFIP)

Philip Koopman, Carnegie Mellon University
Michael Wagner, Edge Case Research LLC

Carnegie
Mellon
University




Getting Obvious Cases Covered Is Challenging

Extreme contrast No lane infrastructure Poor visibility

Unusual obstacles Construction Water (note that it appears flat!)

[Wagner 2014]



Validating High-ASIL Systems via Testing Is Challenging

Need to test for at least ~3x crash rate to validate safety

* Hypothetical fleet deployment: New York Medallion Taxi Fleet

— 13,437 vehicles, average 70,000 miles/yr = 941M miles/year

.- ) [2014 NYC Taxi Fact Book]
* 7 critical crashes in 2015 [Fatal and Critical Injury data / Local Law 31 of 2014]

= 134M miles/critical crash (death or serious injury)

e Assume testing representative; faults are random independent
— R(t) = elamba*t 5 the probability of not seeing a crash during testing

* lllustrative: How much testing to ensure ES NGt Sl e
critical crash rate is at least as good as [VIES R TeE Ra SRS =

human drivers? =» (Atleast 3x crash rate) 122.8M 60%
— These are optimistic test lengths... 308.5M 90%
» Assumes random independent arrivals 401.4M 95%

. _ . -
Is simulated driving accurate enough” 617.1M 99%

Using chi-square test from: http://reliabilityanalyticstoolkit.appspot.com/mtbf test calculator

Koopman & Wagner 3



But, Then There Is The Weird Stuff...

(Weirder than any one person can imagine)

http://piximus.net/fun/funny-and-odd-things-spotted-on-the-road
http://blogs.reuters.com/photographers-blog/2012/11/26/house-in-the-middle-of-the-road/
http://edtech2.boisestate.edu/robertsona/506/images/buffalo.jpg



Machine Learning Might Be Brittle & Inscrutable

Legibility: can humans understand how ML works?

e Machine Learning “learns” from training data
— Result is a weighted combination of “features”
« Commonly the weighting is inscrutable, or at least not intuitive

— There is an unknown (significant?) chance results are brittle
* E.g., accidental correlations in training data, sensitivity to noise

QuocNet:

AlexNet:
Magnified Not a
Bus Difference Bus

Car Not a Magnified
Car Difference

Szegedy, Christian, et al. "Intriguing properties of neural
networks." arXiv preprint arXiv:1312.6199 (2013).




Where Are the Requirements for Machine Learning?

Machine Learning requirements seecrcaron =<\ T TR S =T

are the training data AT‘ %

Reygl ey

VERIFICATION &
TRACEABILITY

* V. model traces reqgts to V&V

UBSYSTEM/
COMPONENT

SUBSYSTEM
COMPONENT
ST Review

VERIFICATION &
TRACEABILITY

 Where are the requirements in a
machine learning based system? il O i

VERIFICATION &
TRACEABILITY

MODULE

— ML system is just a framework

— The training data forms de facto requwementsiJ

L """ Review

UNIT TEST

 How do you know the training data is “complete™? .

— Training data is safety critical ‘@\
— What if a moderately rare case isn't trained? v ,i'“\
. N
« It might not behave as you expect ! \\
» People’s perception of “almost the same” @

does not necessarily predict ML responses! _
Cluster Analysis

6



The Black Swan Meets Autonomous Vehicles

Suggested Philosophy for Testing Autonomous Vehicles:
« Some testing should look for proper functionality

— But, some testing should attempt to falsify a correctness hypothesis
« Much of vehicle autonomy is based on Machine Learning

— ML is inductive learning... which is vulnerable to “black swan” failures
— We've found robustness testing to be useful in this role

Make sure to fault inject
Thousands of miles of “white swans”... some “black swans”




ASTAA:

Automated Stress Testing of Autonomy Systems

SPECIFIED INPUT RESPONSE
BEHAVIOR SPACE SPACE
ROBUST
SHOULD VALID OPERATION
WORK INPUTS
MOBULE REPRODUCIBLE
UNDEFINED UNDER FAILURE

TEST

INVALID,
SHOULD
RETURN _—_* INPUTS
ERROR

FAILURE

Ballista Stress-Testing Tool
Robustness testing of defined interfaces
» Most test cases are exceptional

 Test cases based on best-practice software
testing methodology

» Detects software hanging or crashing

Earlier work looked at stress-testing COTS
operating systems

Uncovered system-killer crash vulnerabilities
in top-of-the-line commercial operating
systems

+

UNREPRODUCIBLE

NREC Safety Monitor

Monitors safety invariants at run-time

» Designed as run-time safety shutdown
box for UAS applications

Independently senses system state to
determine whether invariants are
violated

Firewalls safety-criticality into a small,
manageable subset of a complex UAS;
prototype deployed on Autonomous
Platform Demonstrator (APD), a 9-ton
UGV capable of reaching 80 km/hr

Approved for Public Release — Distribution is Unlimited
(NREC case #: STAA-2012-10-17)



DISTRIBUTION A — NREC case number STAA-2013-10-02



Example Autonomous Vehicle Defects Found via

Robustness Testing

ASTAA Project at NREC found system failures due to:

Improper handling of floating-point numbers:

* Inf, NaN, limited precision

Array indexing and allocation:

* Images, point clouds, etc...

 Segmentation faults due to arrays that are too small

 Many forms of buffer overflow, especially dealing with complex data types
* Large arrays and memory exhaustion

Time:

* Time flowing backwards, jumps

* Not rejecting stale data

Problems handling dynamic state:

 For example, lists of perceived objects or command trajectories
* Race conditions permit improper insertion or removal of items

* Vulnerabilities in garbage collection allow memory to be
exhausted or execution to be slowed down

DISTRIBUTION A — NREC case number STAA-2013-10-02 10



