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Getting Obvious Cases Covered Is Challenging

Extreme contrast No lane infrastructure Poor visibility

Unusual obstacles Construction Water (note that it appears flat!)

[Wagner 2014]



Validating High-ASIL Systems via Testing Is Challenging

Need to test for at least ~3x crash rate to validate safety

* Hypothetical fleet deployment: New York Medallion Taxi Fleet

— 13,437 vehicles, average 70,000 miles/yr = 941M miles/year

.- ) [2014 NYC Taxi Fact Book]
* 7 critical crashes in 2015 [Fatal and Critical Injury data / Local Law 31 of 2014]

= 134M miles/critical crash (death or serious injury)

e Assume testing representative; faults are random independent
— R(t) = elamba*t 5 the probability of not seeing a crash during testing

* lllustrative: How much testing to ensure ES NGt Sl e
critical crash rate is at least as good as [VIES R TeE Ra SRS =

human drivers? =» (Atleast 3x crash rate) 122.8M 60%
— These are optimistic test lengths... 308.5M 90%
» Assumes random independent arrivals 401.4M 95%

. _ . -
Is simulated driving accurate enough” 617.1M 99%

Using chi-square test from: http://reliabilityanalyticstoolkit.appspot.com/mtbf test calculator
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But, Then There Is The Weird Stuff...

(Weirder than any one person can imagine)

http://piximus.net/fun/funny-and-odd-things-spotted-on-the-road
http://blogs.reuters.com/photographers-blog/2012/11/26/house-in-the-middle-of-the-road/
http://edtech2.boisestate.edu/robertsona/506/images/buffalo.jpg



Machine Learning Might Be Brittle & Inscrutable

Legibility: can humans understand how ML works?

e Machine Learning “learns” from training data
— Result is a weighted combination of “features”
« Commonly the weighting is inscrutable, or at least not intuitive

— There is an unknown (significant?) chance results are brittle
* E.g., accidental correlations in training data, sensitivity to noise

QuocNet:

AlexNet:
Magnified Not a
Bus Difference Bus

Car Not a Magnified
Car Difference

Szegedy, Christian, et al. "Intriguing properties of neural
networks." arXiv preprint arXiv:1312.6199 (2013).




Where Are the Requirements for Machine Learning?
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 Where are the requirements in a
machine learning based system? il O i
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— ML system is just a framework

— The training data forms de facto requwementsiJ

L """ Review

UNIT TEST

 How do you know the training data is “complete™? .

— Training data is safety critical ‘@\
— What if a moderately rare case isn't trained? v ,i'“\
. N
« It might not behave as you expect ! \\
» People’s perception of “almost the same” @

does not necessarily predict ML responses! _
Cluster Analysis
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The Black Swan Meets Autonomous Vehicles

Suggested Philosophy for Testing Autonomous Vehicles:
« Some testing should look for proper functionality

— But, some testing should attempt to falsify a correctness hypothesis
« Much of vehicle autonomy is based on Machine Learning

— ML is inductive learning... which is vulnerable to “black swan” failures
— We've found robustness testing to be useful in this role

Make sure to fault inject
Thousands of miles of “white swans”... some “black swans”




ASTAA:

Automated Stress Testing of Autonomy Systems
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Ballista Stress-Testing Tool
Robustness testing of defined interfaces
» Most test cases are exceptional

 Test cases based on best-practice software
testing methodology

» Detects software hanging or crashing

Earlier work looked at stress-testing COTS
operating systems

Uncovered system-killer crash vulnerabilities
in top-of-the-line commercial operating
systems

+

UNREPRODUCIBLE

NREC Safety Monitor

Monitors safety invariants at run-time

» Designed as run-time safety shutdown
box for UAS applications

Independently senses system state to
determine whether invariants are
violated

Firewalls safety-criticality into a small,
manageable subset of a complex UAS;
prototype deployed on Autonomous
Platform Demonstrator (APD), a 9-ton
UGV capable of reaching 80 km/hr

Approved for Public Release — Distribution is Unlimited
(NREC case #: STAA-2012-10-17)
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Example Autonomous Vehicle Defects Found via

Robustness Testing

ASTAA Project at NREC found system failures due to:

Improper handling of floating-point numbers:

* Inf, NaN, limited precision

Array indexing and allocation:

* Images, point clouds, etc...

 Segmentation faults due to arrays that are too small

 Many forms of buffer overflow, especially dealing with complex data types
* Large arrays and memory exhaustion

Time:

* Time flowing backwards, jumps

* Not rejecting stale data

Problems handling dynamic state:

 For example, lists of perceived objects or command trajectories
* Race conditions permit improper insertion or removal of items

* Vulnerabilities in garbage collection allow memory to be
exhausted or execution to be slowed down
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