Cyber-Physical Resilience via Physics-Aware Devices

Saman Zonouz

June 2016

SCADA

Focus Domain

Intermediate level code (ILIL):

Symbolic Scan Cycle:

Generate PLC output safety value constraints automatically

Responsible Disclosures

Allen-Bradley PLC Firmware (collaboration with TU-Darmstadt)

- Physics-aware rootkit damaged physical system
- Faked measurements to the operators to comply with physics

Google and PowerWorld (collaboration with AT&T and MIT)

- Non-control data attacks
- Google \$10K –Hall of Fame

Related paper at Phrack 2016.

Technology Transfer (Siemens)

Operator-Side Program Checking

 Siemens TIA-Portal control logic programming IDE

Project sponsored by Siemens

On-Device Safety Monitoring

Siemens S7-1500 coupled PLCs with on-board coprocessors

Paper at Resilience Week 2016

Practical Feasibility

Past Work

Offline formal verification and model checking

- Unscalable for large-scale platforms

Runtime monitoring and intrusion detection

- Too late for effective response and recovery

Our Solution

Just-Ahead-Of-Time Verification and Response

- + Remarkably smaller system models to analyze
- + Sufficient time for timely intrusion tolerance

Automated Intrusion Tolerance

Objective: Calculate a remedial control for the PLC before the actual execution catches up with JAT

remedial countermeasure

Concluding Remarks

- Optimal control vs. safety redlines
 - reject the control that violate the power system safety requirements
 - replace them with security/safety-preserving countermeasures
- Minimal trusted computing base for infrastructural resilience
 - easier to analyze, verify its correctness, and protect its cyber-security
 - guarantee safety while "huge" SCADA solves for the optimal plant control
- Just-Ahead-of-Time verification allows for countermeasure selection
 - proactive tolerance to prevent too-late responses
 - learns decided-upon responses for later similar unsafe states