Data Driven Probabilistic Graphs for Preemptive Attack Detection

Zbigniew Kalbarczyk

Collaborators: Phuong Cao, Adam Slagel, Ravi K. Iyer

Magnitude of the Problem

Five-Minute Snapshot of In-and-Out Traffic within NCSA

Challenge

- Leveraging security logs to enable timely attack detection and effective corrective/recovery actions.
- Why is this hard?
 - ✓ huge in-and-out network traffic rates;
 - ✓ format/semantic heterogeneity of detectors;
 - ✓ several GBs/day of data;
 - ✓ false positives;
 - need to correlate multiple sources to obtain the "big picture";
 - ✓ analysis is mainly *manual*.

Multi-Stage Attack

From Security Logs to Probabilistic Graphical Models: Factor Graphs

ILLINOIS

ECE ILLINOIS

Factor Graph Representation of an Example Incident

Known random variables

event e^1 = download sensitive event e^2 = restart system service user profile u: past compromise = true

Unknown random variables

state s¹: user state when observing e¹ state s²: user state when observing e²

State inference

Enumerate possible s¹, s² state sequences

benign, benign benign, suspicious benign, malicious,

malicious, malicious

An example Factor Graph

Score(s¹, s²) is the sum of factor functions f1, f2, f3 f4

$$Score(s^1, s^2) = \sum f(c_f)$$

Most probable s^1 , s^2 is suspicious, malicious

Definition of factor functions

$$f_{1} = \begin{cases} 1 & \text{if } e^{1} = download \ sensitive \\ \& \ s^{1} = suspicious \\ 0 & otherwise \end{cases}$$

$$f_{2} = \begin{cases} 1 & \text{if } e^{2} = restart \ service \\ \& \ s^{1} = suspicious \\ \& \ s^{2} = malicious \\ 0 & otherwise \end{cases}$$

$$f_{3} = \begin{cases} 1 & \text{if } e^{2} = restart \ sys \ service \\ \& \ s^{2} = benign \\ 0 & otherwise \end{cases}$$

$$f_{3} = \begin{cases} 1 & \text{if } s^{t-1} = suspicious \\ \& \ s^{t} = malicious \end{cases}$$

 $\& \ u = past \ compromise \\ otherwise$

LLINOIS

ECE ILLINOIS

AttackTagger Workflow

Metrics: Detection timeliness & Preemption timeliness

Detection Timeliness & Preemption Timeliness

ECE ILLINOIS

46 of 62 malicious users were detected in tested incidents (74%)

41 of 46 identified malicious users were identified before the system misuse

ILLINOIS

Detection Performance Comparison

Name	TP	TN	FP	FN
AttackTagger	74.2	98.5	1.5	25.8
Rule Classifier	9.8	96.0	4.0	90.2
Decision Tree	21.0	100.00	0.00	79.0
Support Vector Machine	27.4	100.00	0.00	72.6

Statistical test shows that performance of AttackTagger is better than Support Vector Machine (SVM) not by chance

- Best detection rate (46 of 62 malicious users)
- Small false detection rate (19 users of 1267 benign users)
- Captures hidden malicious users not identified in incident reports

LLNOIS

ECE ILLINOIS

Conclusions

- Factor graph is a suitable representation of user/system state transitions in security incidents.
- Experimental evaluation of factor graph shows that a majority compromised users (74%) can be detected in advance (minutes to hours before the system misuse)
- Our approach can detect a variety of attacks, including hidden attacks that went unidentified by security analysts.

