User-Centric Workload Analytics: Towards Better Cluster Management

Saurabh Bagchi Purdue University

Supported by National Science Foundation (NSF) Jul `15-Jul `18

Joint work with: Subrata Mitra, Suhas Javagal, Stephen Harrell (Purdue), Adam Moody, Todd Gamblin (LLNL) Presentation available at: *engineering.purdue.edu/dcsl*

Problem Context

- Shared computing clusters at university or government labs is not uncommon
- Users have a varying level of expertise
 - Writing own job scripts
 - Using scripts like a black box
- Varying user needs
 - High computation power
 - Analysis of large structures (Civil, Aerospace engineering)
 - High Lustre bandwidth for file operations
 - Working with multiple large databases/files (Genomics)
 - High Network Bandwidth
 - A parallel processing application

Motivation

- Challenge for the cluster management
 - Need for customer centric analytics to pro-actively help users
 - Improve cluster availability
 - In addition to failures, investigate performance issues in jobs
- Need for open data repository of system usage data
 - Currently, lack of publicly available, annotated quantitative data for analyzing workloads
 - Available public data sets provide only system level information and not up-to-date
 - Dataset must not violate user privacy or IT security concerns

URL: https://github.com/purdue-dcsl/fresco

Cluster Details: Purdue

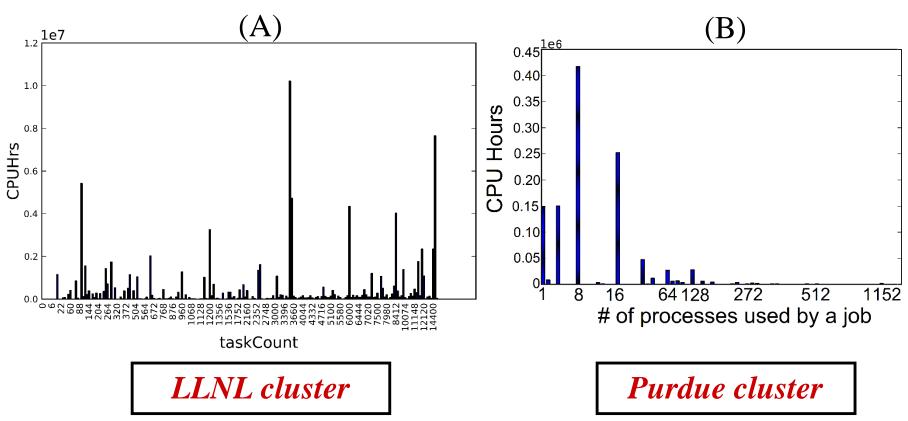
- Purdue's cluster is called Conte
- Conte is a ``Community" cluster
 - 580 homogeneous nodes
 - Each node contains two 8 core Intel Xeon E5-2670 Sandy Bridge processors running at 2.6 GHz
 - Two Xeon Phi 5110P accelerator card, each with 60 cores
 - Memory: 64GB of DDR3, 1.6 GHz RAM
- 40 Gbps FDR10 Infiniband interconnect along with IP
- Lustre file system, 2GB/s
- RHEL 6.6
- PBS based job scheduling using Torque

Cluster Details: LLNL

- SLURM: Job Scheduler
- TOSS 2.2 OS
- 16-core Intel Xeon processors (Cab)
- 12-core Intel Xeon processors (Sierra)
- 32GB memory (Cab)
- 24GB memory (Sierra)
- 1296 nodes (Cab) and 1944 nodes (Sierra)
- Infiniband network

Cluster Policies

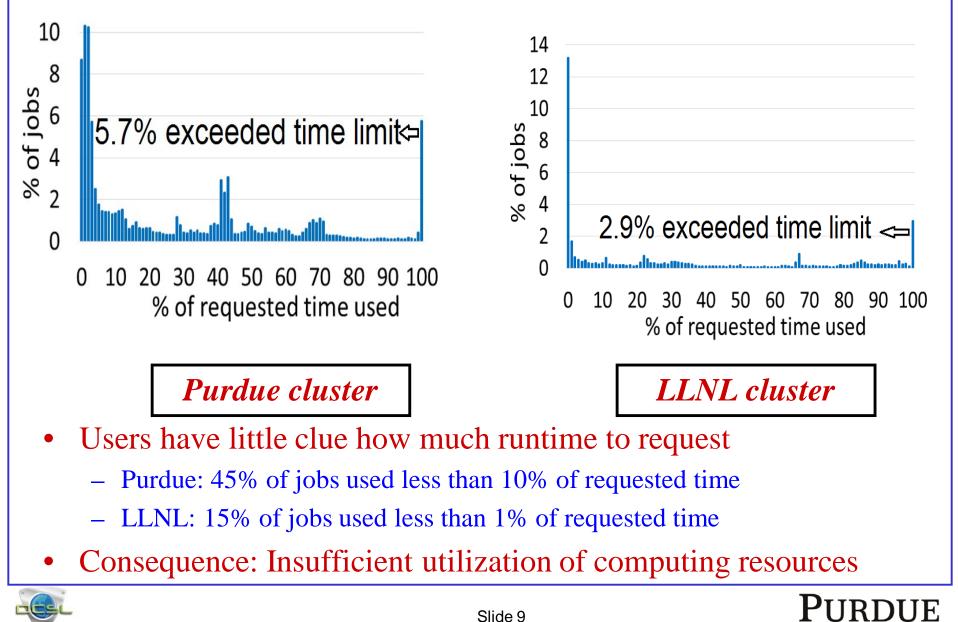
- Scheduling:
 - Each job requests for certain time duration, number of nodes and in some cases, amount of memory needed
 - When job exceeds the specified time limit, it is killed
 - Jobs are also killed by out-of-memory (OOM) killer scripts, if it exhausts available physical memory and swap space
- Node sharing:
 - By default only a single job is scheduled on a an entire node giving dedicated access to all the resources
 - However, user can enable sharing by using a configuration in the job submission scripts

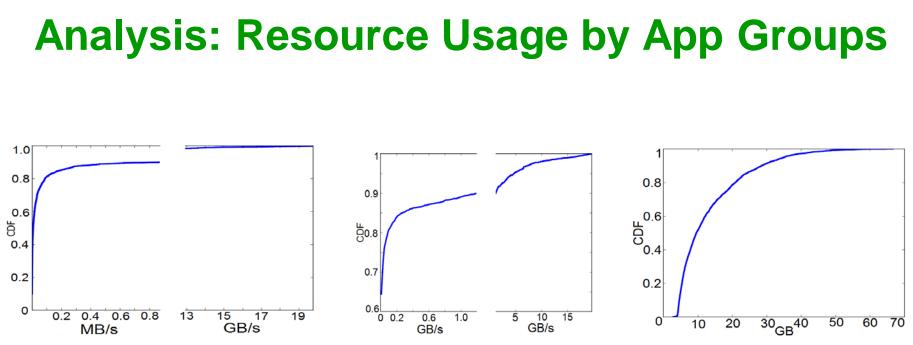

Data Set

- Accounting logs from the job scheduler, TORQUE
- Node-level performance statistics from TACC stats
 CPU, Lustre, Infiniband, Virtual memory, Memory and more...
- Library list for each job, called liblist
- Job scripts submitted by users
- Syslog messages

Summary	Conte	Cab and Sierra
Data set duration	Oct'14 – Mar'15	May'15 – Nov'15
Total number of jobs	489,971	247,888 and
		227,684
Number of users	306	374 and 207
URL : https://github.com/purdue-dcsl/fresco		

Analysis: Types of Jobs




- Different job sizes
 - Purdue has a large number of "narrow" jobs
 - LLNL jobs span hundreds to thousands of processes

RS

Analysis: Requested versus Actual Runtime

Infiniband read rate on Conte Lustre read rate on Conte Memory usage on Conte

- Clearly, there are 2 distinct types of jobs
 - Few jobs need high bandwidth backplane for Network and IO
 - In case of memory, such a distinction is not present
- Follow-on: Specialized cluster built in 2015 for high resource demands
 - Has 56 GBps Infiniband network

ERS

Analysis: Performance Issues due to Memory

- Find a (quantitative) threshold on major page fault rate
- Find all jobs (and job owners) which exceed the threshold
- In the extreme, memory exhaustion leads to invocation of oom-killer, kernel level memory manager
- Multiple evidence for memory problems: Syslog messages with out-of-memory (OOM) code and application exit code
 - 92% of jobs with memory exhaustion logged OOM messages
 - 77% of jobs with OOM messages had memory exhaustion exit code

Current status of the repository

- Workload traces from Purdue cluster
 - Accounting information (Torque logs)
 - TACC stats performance data
 - User documentation
- Privacy
 - Anonymize machine specific information
 - Anonymize user/group identifiers
- Library list is not shared
 - For privacy reasons

URL: https://github.com/purdue-dcsl/fresco

Conclusion

- It is important to analyze how resources are being utilized by users
 - Scheduler tuning, resource provisioning, and educating users
- It is important to look at workload information together with failure events
 - Workload affects the kinds of hardware-software failures that are triggered
- Open repository started with the goal for different kind of analyses to enhance system dependability

URL: https://github.com/purdue-dcsl/fresco

