
The RO-6 Theorem and!
Latency-Optimal Read-Only Transactions!

Haonan Lu (USC)!
!
Khiem Ngo (USC)!
!
Chris Hodsdon (Rutgers-Camden, undergrad)!
!
Shuai Mu (NYU, postdoc)!
!
Wyatt Lloyd (USC) !

Outline!
•  Read-only transactions!

•  Latency-optimality!

•  The RO-6 theorem!

•  New algorithms!

•  Preliminary results!

Target: Scalable Data Stores!

A-F!

G-L!

M-R!

S-Z!

3!

Key Point: Data is distributed
across multiple nodes!
!
Must contact multiple disjoint
servers to read data!

Read-Only Txns Necessary!
Asynchronous requests + distributed data = ????? !

A!

B!

C!

1!

5!

6!

Update A!2!

Update B!3!

Update C!4!

??? 	

Why Latency?!
•  Directly impacts user experience!

•  Multiplicative!
–  “In practice, a single user request [has] critical path

that is dozens of subqueries long.” [Facebook,
HotOS ‘15]!

•  Matters even more for geo-partitioned data!
–  Khiem Ngo “K2” project looking at this!

•  Tractable!!
–  Throughput is much harder to capture precisely!

The RO-6 Theorem:!
Impossibility Result for All 6 Properties!

1.  One round of messages!
2.  One version returned by servers!
3.  Non-blocking!

4.  Strict serializability!
5.  Conflicting write transactions!

6.  Point-to-point messages!

Latency!

Power!

RO-6 Theorem!
•  Impossible to achieve all 6 together!
– Proof by contradiction!

•  Set of 6 properties is minimal!
– Any 5 of the 6 properties is achievable!

•  We have the algorithms!!
– Still determining exact bounds on properties!

•  1 rounds vs 2 rounds vs N rounds!

Why RO-6 Theorem?!
•  Avoid trying to do the impossible!

–  This is how we got here!

•  Let us actually say this is the best we can do!
–  Caveat: latency + read-only transactions!

•  Guide for understanding when we can improve
read-only transaction algorithms!

New Algorithms!
Make reads faster at the expense of writes!
•  COPS-RO6: No conflicting write-only transactions!

–  Writes check causal dependencies before being applied to
determine preceding read-only txns!

•  Eiger-RO6: Blocking!
–  2PC for write transactions carries metadata about “earlier”

read-only transactions, read-only transactions block to
eliminate race-condition!

•  Eiger-Chris: Strict serializability!
–  Provides “process serializability”, delays write completion!

•  Rococo-RO6: Blocking!

Implementation & Evaluation!
•  COPS-RO6: Still to be implemented!

•  Eiger-RO6: Implemented!
–  Lower latency, especially for large “expanding” read-only txns!
–  No throughput improvement!

•  Conjecture: throughput will improve for highly skewed workloads!

•  Eiger-Chris: Still to be implemented!

•  Rococo-RO6: Implemented!
–  Lower latency & higher throughput!
–  Rococo eliminated aborts for read/write txns, but read-only txns

could abort. New algorithm for read-only txns avoid all aborts.!
•  TPC-C: All 5 types of transactions avoid aborts now!

Feedback!
•  New targets for RO-6 Theorem?!

•  Related work pointers!

•  Better terminology!

•  Eliminate “point-to-point” messages!
!

