
Protecting Real-Time Applications
against Memory Induced Slowdown on
a Small Multicore System

Ongoing work

Gilles Muller *

Antoine Blin+*, Julien Sopena*, Julia Lawall*

+ Renault

* Inria / Lip6 / Sorbonne Universités

The problem

Car

Alerts

Infotainment

system
Entertainment

system

• Real time
• Best effort

How to reduce the cost of
hardware?

Car

Alerts

Infotainment

system
Entertainment

system

Core 0 Core 1, 2, 3 Sabre Lite IMX 6

The software stack

Car

Alerts

Infotainment

system
Entertainment

system

Core 0 Core 1, 2, 3 Sabre Lite IMX 6

Hypervisor (SeL4)

AUTOSAR Linux

• Legacy software

• CPU isolation

The research problem:
L2 and Memory shared by all cores !

What happens if the Best Effort applications
use a lot of memory?

MiBench under contention

� Benchmark suite for embedded systems
� Automotive, Industrial Control, Networking, and

Telecommunications
� 35 applications (different data sets)
� Exclude 19 applications

� X86, office related or long running

� MiBench on one core, 3 loads on the other
cores
� “ Add” kernel from the Stream suite
� Compilation options selected to generate the

highest load

Impact of L2 cache partitioning

Partitioning and contention

Our Goals

� Protection : Ensure that the memory
induced overhead for RT applications
remains below a threshold
� Suspend best-effort applications if the

threshold is reached

� Parallelism : Avoid suspending the best-
effort applications when acceptable
� Baseline: run real-time application and best-

effort applications in exclusion

Our approach

� Estimate the overhead based on memory traffic
� Periodic sample (100 µs) of the memory traffic

during execution

� Conservative computing of the overhead for the
current sample

� Suspend the Best-Effort applications if the
cumulated overhead is greater than the desired
threshold

Conservative Computing of the
Overhead

What is the worst overhead for a given sample value M?

� Off-line profiling of the Real-Time application
 Q : maximum bandwidth for the real-time application

� We measure a quantity, not a bandwidth
� Estimate the worst packing case from the flat case

M

MGB QQ

BE BEOvd
<<

Flat case Packed case

M

Bmax

Estimating the packed case (1)

M = Measured Bandwidth

Bmax = Maximum measured Bandwidth for a realtime Q

MGB = Minimum measured Guaranteed Bandwidth

MGB Q
BE

M

Bmax

Estimating the packed case (2)

tt = time together
ta = time alone

MGB Q
BE

Bmax

tt ta

Measuring the Flat case

� RT periodic microbenchmark with constant rate of
memory access
� Array copy to generate traffic
� Delay loop to generate lower traffic
� GCC 4.6.3 using the -O2 option

� “Add” kernel as load with varying delay

� Loads from 86MB/s to 1786MB/s

Flat case results

MGB and Bmax results

Packed Overhead

Off-line preparation

Minimize the cost of computations at run-time

� Pre-compute a set of curves for possible
values of Q
� Measured bandwidth is an index into a table of

overhead values

� Values for Q
� Based on profiling of the real-time application
� [0…Maximum] or set of possible values

Constructing the memory profile of
the real-time application

What is the maximum bandwith requirement at
a given sample?

� High resolution sampling approach
� Similar problem to WCET estimation using

tests
� Consider the maximum value in all possible

paths
� Smooth the samples into a set of plateaux to

mask execution variations
� Adaptive approximation by piecewise constants
� Merge samples that generate the least

approximation

HiRes profiling - Patricia

� 5 us resolution

MiBench profiles

� 5 plateaux were sufficient to capture the main
variations in memory bandwidth of the 8 MiBench
applications

Run-time System

� Implementation within the Linux kernel
� Kernel module, application profile communicated

using sysfs

� Given the sample index, computation of the
plateau which then determines the micro-
benchmark instance

� Given the sample bandwidth value and the
memory characterization table, we get the
sample overhead

Preservation of real-time
properties

� 1 to 3 instances of the “Add” kernel as
loads

Progress of Best-Effort
applications (in progress)

� Benefit: percentage of time when the BE
applications run concurrently with the RT one

� « Add » kernel loads
� Multicore GPS-like application

� MiBench application activated every 100ms

Conclusion

� Preservation of the real-time properties
� Better concurrency between BE and RT

applications

� What’s next:
� Selective BE application suspension based on L1

cache misses
� Plateau optimization
� Support for multiple RT applications

