ON THE RELEVANCE OF ISVV FOR AEROSPACE SOFTWARE OR REAL ISSUES IN AEROSPACE CRITICAL SYSTEMS DEVELOPMENT

N. Silva U. of Coimbra/CSW, Portugal M. Vieira U. of Coimbra, Portugal

IFIP WG 10.4

68th Meeting Búzios, Brazil June 28th, 2015

Marco Vieira
mvieira@dei.uc.pt
Department of Informatics Engineering
University of Coimbra - Portugal

CONTEXT

Space safety critical systems' development follows strict processes, ruled by standards (i.e. ECSS)

- Verifications performed to reduce defects
- Independent Software Verification & Validation (ISVV) aims at finding remaining defects
 - Performed by an independent entity
 - Includes a multitude of different techniques
 - Addresses the multiple artifacts of the project
 - Requirements Verification
 - Design Verification
 - Code Verification
 - Test Verification

...

STANDARDS AND MORE STANDARDS...

Misc Automation **Automotive** Railway **Airborne Space ECSS** series **IEC 61508 ARP 4761** Processes for project Functional safety of electrical/electronic/programmable electronic safety-related systems **Guidelines and Methods** management, for Conducting the enaineerina and Safety Assessment EN 50126 product assurance in Process on Civil Airborne **IEC 61511** space projects and Railway applications - The **IEC 62304** Systems and Equipment ISO 26262 applications Functional safety specification and Medical device Road vehicles -Safety instrumented demonstration of software – **ARP 4754** systems for the reliability, availability, Functional safety Software life cycle NASAprocess industry sector maintainability and safety Certification processes STD-8719.13B (RAMS) Considerations for Software Safety Hiahly-Integrated or Standard - NASA EN 50128 **IEC 62061** Complex Aircraft **IEC 60880** Safety of machinery -Railway Nuclear power Functional safety of Commun plants electrical, electronic signalling Instrumentation and programmable systems and control systems electronic control railway a *important to safety* systems protection

EN 502

Railway

Commun

signalling

systems - electroni

signalling

Are Standards Enough?

301 22:22:40.64

category A

functions

Software aspects

for computer-based

systems performing

GOALS OF THE STUDY

Focus on Aerospace Critical Systems development

- Goal 1: Understand the relevance of ISVV
- Goal 2: Analyze real issues in aerospace critical systems development
- Goal 3: Study the applicability of ODC to classify issues
 - ODC is widely used to classify issues that belong to the software development phases
 - Defect Type, Defect Trigger, Defect Impact
 - Defines attributes according to which issues can be classified
 - Allow for statistical and root-cause analysis

OVERALL APPROACH

ISVV Issues Selection

Data Clean-Up/Anonymization

Data Classification (ODC)

Results Analysis

Recommendations and Conclusions

THE SYSTEMS

Related to the space domain (satellite systems)

- Cover different types of systems
 - Start-up or boot software, on-board application software, payload software, full system
- 16 different systems or subsystems
- Analysis of more than 10000 requirements, more than 1 million LoC, and over 1.500 tests
- The engineering processes used for the selected missions had to follow the ECSS standards
 - Similar lifecycle and strict requirements imposed by European Space Agency (ESA)
- Anonymous... for reasons you understand!

ISSUES ANALYZED

Detection Phase	Amount of RIDs
Requirements Verification	162
Design Verification	112
Code Verification	378
Test Verification	398
Ground Monitoring	20
Total	1070

14% classified as major issues, 66% as minor and 20% as improvement comments

ORIGINAL ISVV CLASSIFICATION

Problem Type	# Issues	%
External Consistency	313	29%
Completeness	275	26%
Correctness	213	20%
Internal Consistency	132	12%
Technical Feasibility	3	<1%
Readability & Maintainability	84	8%
Superfluous	14	1%
Improvement	34	3%
Accuracy	2	<1%
Total	1070	100%

Analysis Using ODC (TYPE)

ANALYSIS USING ODC (TRIGGER)

ANALYSIS USING ODC (IMPACT)

ANALYSIS ACROSS PHASES

	Requirements Verification	Design Verification	Code Verification	Test Verification	Ground Monitoring	Total %
Requirements	162	6	10	20	1	199 18.6%
Design	0	106	77	0	6	189 17.6%
Implementation	0	0	289	8	0	297 27.7%
Testing (UT/IT + System Tests)	0	0	2	370	9	381 35.6%
Operation	0	0	0	0	4	4 0.37%
Total %	162 15.1%	112 10.4%	378 35.3%	398 37.2%	20 1.8%	1070 100%

RECOMMENDATIONS (1)

Reinforced importance of documentation quality measures

- Namely documentation reviews
- Need for improved requirements engineering, requirements analysis techniques or tools and requirements testing
- Promotion of traceability analysis between every phase of the engineering process
 - If possible automation of these traceabilities...

RECOMMENDATIONS (2)

Test improvements, test coverage improvement, and specific validation plan guidelines shall be proposed

- Help engineering in defining better and more complete tests
- Focus on requirements coverage, both functional and nonfunctional
- Reliability and Dependability analysis shall be performed in a more efficient way:
 - Integrated at all lifecycle phases
 - Start earlier
 - Become more extensive
 - Automated and
 - Promote traceability and historical results follow-up

CONCLUSIONS

Goal 1: Relevance of ISVV

- Confirmed!
- Many relevant issues captured by ISVV in different phases
- Goal 2: Real issues in aerospace critical systems
 - Large number of issues identified, some during operation
 - Standards help, but not completely!
- Goal 3: Applicability of ODC
 - Needs to be extended
- Other safety critical industries may also learn from this

• • •

QUESTIONS?

Marco Vieira

Department of Informatics Engineering University of Coimbra

mvieira@dei.uc.pt
http://eden.dei.uc.pt/~mvieira

